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a b s t r a c t

In this paper, the problem of dissipativity and passivity analysis for uncertain discrete-time stochastic
Markovian jump neural networks with additive time-varying delays is investigated. By introducing a
triple-summable term in the Lyapunov functional and by applying stochastic analysis technique, the
dissipativity and passivity criteria are established for discrete-time neural networks with additive time-
varying delays. The reciprocally convex approach is utilized to bound the forward difference of the triple-
summable term. The proposed criteria that depend on the upper bounds of the additive time-varying
delays are given in terms of linear matrix inequalities, which can be solved by MATLAB LMI Control
Toolbox. Two numerical examples are given to demonstrate the effectiveness of the proposed method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Neural networks (NNs) have received extensive attention in the
past decades due to their extensive applications in a variety of
areas, such as signal processing, image processing, optimization
problems, pattern recognition, associative memory, model identi-
fication, fixed-point computation, and other scientific areas
[1–7,18,23,28,35,37,39]. It is worth noting that, for numerical
simulation and practical implementation of the continuous-time
neural networks, it is necessary and essential to formulate a
discrete-time system that is an analogue of the continuous-time
system. The discretization may not preserve the dynamics of the
continuous-time counterpart even for a small sampling period.
Moreover, the connection weights of the neurons are inherent
dependent on certain resistance and capacitance values that
inevitably bring in uncertainties during the parameter identifica-
tion process. Therefore, a study on the dynamics of discrete-time
neural networks is crucially needed. For this study, many effective
methods utilized in standard state-space systems have been
extended to time-delay neural networks, for example, the free
weighting matrices method [2], the delay-partitioning method [3],
the triple-integral technique [4], and the reciprocally convex

combination method [5]. Taking this into account, in [43], the
author investigated the stability analysis of discrete-time neural
networks with delays. In addition, exponential filtering for
discrete-time switched neural networks with random delays has
been studied in [43]. Recently, finite-time stability analysis of
discrete-time neural networks is addressed in [44].

Markov jump systems described by a set of linear systems with
commutations generated by a finite-state Markov chain are very
appropriate and powerful to model changes induced by external
causes, e.g., random faults, unexpected events, and uncontrolled
configuration changes [40]. Therefore, the study of Markov jump
systems with or without time-delay is of great significance both
theoretically and practically, and a lot of relevant results have been
reported in the literature over the past decades [22,35,42]. On the
other hand, the word “stochastic” means “pertaining to chance”
(Greek roots), and is thus used to describe subjects that contain
some element of random or stochastic behavior. For a system to be
stochastic, one or more parts of the system has randomness asso-
ciated with it. Unlike a deterministic system, for example, a sto-
chastic system does not always produce the same output for a given
input. A few components of systems that can be stochastic in nature
include stochastic inputs, random time-delays, noisy (modeled as
random) disturbances, and even stochastic dynamic processes.
A stochastic process is one whose behavior is non-deterministic, in
which a system's subsequent state is determined both by the pro-
cess's predictable actions and by a random element [40,41]. Addi-
tionally, in real neural networks, synaptic transmission is an
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inherent noisy process induced by random fluctuations along with
released factors from neurotransmitters or other probabilistic
causes.

Dissipativeness was initially introduced by Willems (1972) in
terms of an inequality involving the storage function and supply
rate. Dissipativity theory provides a fundamental framework for
the analysis and design of control systems using input–output
description based on system energy related considerations.
Dissipativity theory is an important idea which has been used in
many areas of sciences and control engineering. This provides
strong connection between Physics, system theory and control
engineering. Dissipativity has proven to be essential and very
useful tool for control applications like robotics, active vibration
damping, electromechanical systems, combustion engines, circuit
theory, and for control techniques like adaptive control, and
inverse optimal control [10,32]. The main idea behind this is that
many important physical systems have certain input–output
properties related to the conservation, dissipation and transport of
energy. Therefore, dissipativity analysis of the dynamical systems
has become an active area of research in both theoretical and
practical point of view.

Passivity, as a particular case of dissipativity, was introduced in
[11] and later generalized in [12]. The passivity theory, intimately
related to the circuit analysis method [13], means that the systems
cannot generate more energy than what they absorb. That is to say,
the passive property can keep a system internally stable, and thus
play a critical role in the analysis of the stability of dynamical sys-
tems for nonlinear control and other research fields. In [25], the
author investigated dissipativity analysis for discrete stochastic
neural networks with Markovian delays and partially known tran-
sition matrix. The problem of dissipativity of discrete-time neural
networks with time delay has been investigated in [27]. In [45],
robust passivity analysis of neural networks with discrete and dis-
tributed delays is addressed. Over the past decade, the problems of
dissipativity and passivity analysis for continue-time neural net-
works and discrete-time neural networks have been extensively
studied and many dissipativity and passivity conditions have been
reported [21–26,36,38]. However, to the best of our knowledge,
there is no work in the available existing literature that considers
the problem of dissipativity and passivity analysis for uncertain
discrete-time stochastic Markovian jump neural networks with
additive time-varying delays. Thus, the main purpose of the present
research is to linkage such a gap by making the first attempt to deal
with the dissipativity analysis problem for discrete-time stochastic
neural networks with additive time-varying delays. Moreover, in
[22] the author investigated the problem of passivity analysis for
discrete-time stochastic Markovian jump neural networks with
mixed time delays. In addition, the problem of stochastic dis-
sipativity analysis on discrete-time neural networks with time-
varying delays is addressed in [26].

Meanwhile, time delay is one of the most important parameters
in delayed neural networks. In hardware implementation of neural
networks, time delay is an unavoidable factor due to finite
switching speed of the amplifiers and communication time. The
existence of time delay may affect dynamic behaviors such as
oscillation, instability, divergence, manufacturing systems, tele-
communication and economic systems, and is a major cause of
instability and poor performance of neural networks [6]. In net-
worked systems, signals transmitted from one point to another may
experience two segments of networks, and the resulting time
delays have different properties due to variable network transmis-
sion conditions. This model has a physically powerful application
background in remote control and networked control. Followed by
this, the network-induced delay can be represented as the sum of
two additive time-varying delay components [7,8,19,20]. For NNs
with two additive time-varying delay components, a stability

criterion is presented in [9] by using the free-weighting matrix
method. In this paper, we consider dk2 as the time-delay induced
from sensor to controller and dk2 as the delay induced from con-
troller to the actuator. The stability analysis of such system was
earlier carried out by adding up all the successive delays into single
delay (i.e. dk1þdk2 ¼ dðkÞ) to develop sufficient dissipativity and
passivity conditions. Taking this into account, in this paper, we
handle both lower and upper bounds of the additive delays (i.e. 0
rd11rdk1rd12 and 0rd21rdk2rd22) for obtaining the dis-
sipativity and passivity results. Furthermore, time delay in the
leakage term also has great impact on the dynamics of neural
networks because time delay in the stabilizing negative feedback
term has a tendency to destabilize a system. In practice, the leakage
delay is not a constant, so we ought to consider the neural networks
with time-varying leakage delay. It is worth noting that, in most of
the available existing literatures, only continuous-time neural net-
works with leakage delay have been studied [29,30]. However, it
appears that very little attention is devoted to the investigation of
dissipativity and passivity for discrete-time neural networks with
time-varying leakage delay. Therefore, it is necessary to further
investigate the dissipativity and passivity problem for neural net-
works with both leakage delay and stochastic effects.

Motivated by the above discussions, in this paper, the problem of
dissipativity and passivity analysis of discrete-time stochastic neural
networks with additive time-varying delays is considered. By con-
struction of newly augmented Lyapunov–Krasovskii functional and
utilization of reciprocally convex combination approach [27]
employed to bound the forward difference of a triple-summable
term, a sufficient condition is established to ensure the ðQ;S;RÞ – γ
-dissipativity and passivity criteria which depends on the additive
time-varying delays. Such condition is demonstrated in terms of
linear matrix inequalities (LMIs) to guarantee the dissipativity and
passivity conditions of delayed neural networks, which can be
easily checked by MATLAB-LMI toolbox. Later, based on the results
of Theorem 3.1, passivity criteria for discrete-time stochastic neural
networks with additive time-varying delays have been introduced
in Corollary 3.5. Finally, the effectiveness and advantages of the
derived results are demonstrated by two illustrative examples.

The rest of this paper is organized as follows. Section 2 for-
mulates the problem under consideration. Dissipativity and pas-
sivity analysis for uncertain discrete-time stochastic Markovian
jump neural networks with additive time-varying delays are pre-
sented in Section 3. Illustrative examples and their simulation
results for dissipativity have been given in Section 4. Finally con-
clusions are drawn in Section 5.

Notations: Throughout this paper, I represents the unitary
matrix with appropriate dimensions, N denotes the set of non-
negative integers. Rn stands for the n-dimensional Euclidean
space, and Rm�n denotes the set of all m�n real matrices.
The notation X40 (respectively, XZ0), for XARn�n means that
the matrix X is a real symmetric positive definite (respectively,
positive semi-definite), XT represents the transpose of matrix X, we
use an asterisk ðnÞ to represent a term that is induced by sym-
metry. The matrix 0n;m denotes the null matrix of order n�m. ðΩ
;F ;PÞ is a probability space, Ω is the sample space, F is the
σ-algebra of subsets of the sample space Ω. P is the probability
measure on F , E½�� denotes the expectation operator with respect
to some probability measure P. For integers a and b with aob, let
N½a; b� ¼ fa; aþ1;…; b�1; bg. l2½0; þ1Þ denotes the space of square
integrable vector functions over ½0;1Þ.

2. Problem description and preliminaries

Throughout this paper, let rðkÞðkZ0Þ be a Markov chain taking
values in a finite state space S¼ f1;2;⋯sg with probability
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