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a b s t r a c t

In modern industry, fault diagnosis and process supervision are very important in detecting machinery
failures and keeping the stability of production systems. In this paper, a multi-class support vector
machine (SVM) based process supervision and fault diagnosis scheme is proposed to predict the status of
the Tennessee Eastman (TE) Process. After preprocessing the collected data, principal component analysis
(PCA) is firstly used to reduce the feature dimension. Then, to increase prediction accuracy and reduce
computation load, the optimization of SVM parameters is accomplished with the grid search (GS)
method, which generates comparable classification accuracy to genetic algorithm (GA) and particle
swarm optimization (PSO) while being more efficient than the latter two algorithms. Finally, to
demonstrate the effectiveness of the proposed SVM integrated GS-PCA fault diagnosis approach, a
comparison is made with other related fault diagnosis methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, the modern industrial process is usually compli-
cated, and various uncertainty and nonlinearity are involved. In
this case, a seemingly small fault may cause unimaginable con-
sequences. Therefore, the importance of fault detection and diag-
nosis in the industry can not be ignored any more. As fault diag-
nosis is a potential approach to improve productivity, increase
production process utilization and reduce the maintenance costs,
it has attracted much attention in recent years. Some of the newly
proposed fault detection and diagnosis methods can be found in
[1–6]. Most of the existing fault diagnosis schemes rely on the
availability of process analytical models and only a few papers, e.g.,
[1,7,8], are devoted to data-driven fault detection and isolation
approaches. Data driven techniques can be quite effective in the
case that the analytical process models are not available. Espe-
cially, for the large-scale plants, whose physical models are gen-
erally difficult to be established, data driven approaches offer an
effective alternative solution for process monitoring. Therefore,
the production process monitoring and fault diagnosis schemes
with data based fault identifying techniques have prospered and
begun to be applied in the industry to protect the production
system from disastrous accidents and keep stability [9,34].

With the availability of statistical learning theory [10–13] and
convenient process signals collecting techniques, data based
techniques have been developed quickly, and some works in this
area include [8,14,15,7]. Furthermore, machine learning techni-
ques have been applied widely in many domains ranging from
image processing, face and object categorization, information and
image retrieval, etc. Several machine learning algorithms, e.g.,
artificial neural networks (ANN), principal component analysis
(PCA), fuzzy expert system, lazy learning, random forest, have
been applied in industrial production systems to monitor machine
condition and detect process faults [16,17]. For example, PCA was
used to analyze product quality for a pilot plant [18] and in [19] a
key performance indicator prediction scheme was designed to be
used in a hot strip mill. However, Support vector machine (SVM) is
rarely used in machine condition monitoring and fault diagnosis.
Sometimes, it is used in combination with some other technolo-
gies, e.g., wavelet package transform, genetic algorithm (GA) and
fractal dimension [20–22]. And it is usually expertise-oriented and
problem-oriented [23].

In machine learning, SVM is an important classification
approach. SVM is designed based on the Vapnik–Chervonenkis
theory [24,25] and exhibits superior generalization ability in
practice. It is able to handle the classification problem with finite
(or small) samples as well as large feature space [23,26]. Since in
the manufacture field the number of faulty samples is relatively
small and signal data can be easily collected, SVM has been
introduced to conduct the machine condition monitoring and fault
diagnosis.
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In fault diagnosis, data analysis technique is one of the most
preferable and reliable methods. Generally, a diagnosis scheme is
composed of three stages. The first stage is signal data acquisition
with appropriate sensors. Then data processing including nor-
malization, dimension reduction and statistical feature extraction
are executed in the next step. Some feature selection techniques
including Genetic algorithms (GAs), PCA and Particle swam opti-
mization technique (PSO), are commonly used to reduce the
dimension of the recorded data set as well as save computation
load [9]. In the final step, the operation status of the monitored
process is predicted by maintenance personnel manually or by
some automated computational intelligence methods such as ANN
and SVM. SVM is preferred here as it is a representative nonlinear
classifier and possesses superior generalization ability [27]. These
nice properties make it extensively used in the field of classifica-
tion analysis, such as process monitoring and fault diagnosis [28].
In this paper, after methods comparison, an improved SVM based
industrial process faults diagnosis scheme is proposed. Fault
diagnosis experiments are conducted with the TE process model,
and the results show that the proposed SVM integrated GS-PCA
fault diagnosis scheme performs better in both classification
accuracy and computation efficiency.

The remainder of this paper is organized as follows. The SVM
classification algorithm, the PCA algorithm, and three optimization
algorithms, i.e., GA, PSO and GS, are briefly introduced in the next
section. In Section 3, simulations are conducted to predict the
status of the Tennessee Eastman process and the results validate
the effectiveness of the proposed approach. Finally, Section 4
summarizes the conclusions.

2. Methods

2.1. Support vector machine (SVM)

SVM is a popular classification technique widely used in various
fields. In the following we briefly introduce the theoretical foun-
dation of SVM. Generally speaking, a classification task involves
training data and testing data. The training data is used to train a
prediction model, which is then used to predict the labels of
testing data. In industrial applications, the collected historical data
usually serve as the training data. Every sample in the training set
consists of two parts, i.e., the observed variables (called attributes)
and the corresponding class labels. Since this paper focuses on the
industrial fault diagnosis, the class labels here refer to the statuses
of the industry process, i.e., normal status or the faulty statuses
(needed to be specific to the serial number of the faults). Then, the
training data are used to built a prediction model. The testing data
generally contain only the attributes. The missing class labels will
be predicted by feeding the testing data to the prediction model. In
this way, statuses of the process can be identified based on the
collected data.

The key of SVM is to find out linear hyperplanes to separate the
data in different classes with maximum margins. Taking the binary
classification problem for example, the distance between two
classes of training data should be as large as possible. The separ-
ating hyperplane should have maximal distances with the closest
data points belonging to the both sides and it is located in the
middle of the margin. The nearest points to the hyperplane are
called support vectors (SVs), and they are representative data
points because they contain almost all the information needed to
determine the classifier.

In training set, an instance is denoted as ðxi; yiÞ; i¼ 1;…;m
where xiARn and yAf1; �1g. m is the number of the observed
samples while n represents the number of attributes. The hyper-
plane is denoted by wTxiþb¼ 0, and the SVM classification

problem is transformed to finding out optimal parameters wT and
b to maximize the distance between hyperplanes wTxiþb¼ 1 and
wTxiþb¼ �1. According to [25], the problem translates to the
following optimization problem:

min
w;b

1
2
JwJ2þC

Xm
i ¼ 1

ξi ð1Þ

s:t: yiðwTxiþbÞZ1�ξi; ð2Þ

ξiZ0; ð3Þ
In Eq. (1), the parameter C is a user-specified penalty parameter of
error term. The error term is represented by the parameter ξi.

In some cases, the original input data can not be linearly
separated. Then the mapping function ϕ is introduced to map the
input data into a new feature space with higher dimension, where
the input data become linearly separable. Using the corresponding
mapping function, the kernel function is denoted as

Kðxi; xjÞ ¼ oϕðxiÞ;ϕðxjÞ4 ð4Þ
Usually the kernel function is used more extensively than the
mapping function, as it is less expensive to calculate. It enables the
optimization problem Eq. (1) to be solved in the input space itself
instead of the higher dimensional mapping space [25]. Table 1
presents four commonly used kernels.

In this paper, we adopt the Gaussian radial basis function (RBF)
in the SVM classifier. Generally speaking, the RBF kernel function
is usually the first option, especially when the data set has large
numbers of instances. The main reason is as follows. Firstly, by
adjusting the parameters, the RBF kernel can perform similarly
with sigmoid kernel and linear kernel. Secondly, the RBF kernel
involves only penalty error parameter C and kernel parameter γ,
and has relatively small numerical difficulty [29].

2.2. Dimension reduction with PCA

It is very important to scale the attribute values in the training
data and testing data into a small range before they are put into
the SVM prediction model. On one hand, it can avoid the large
values dominating the small ones. On the other hand, scaling
attribute values into a small range will avoid dimension disaster
and decreasing calculation load [35]. In this paper, each attribute
value will be linearly scaled to the range between 0 and 1 to avoid
the numerical difficulty caused by large attribute values. What is
more, the training set and testing set are scaled at the same time.

As a commonly used dimension reduction algorithm, PCA
extracts a set of uncorrelated variables and store them in features
of smaller dimensions. Due to its efficiency and simplicity in
dealing with the data sets with high dimensions, PCA has been
widely applied in various fields in practice, especially for data
compression. The procedure of standard PCA approach to reduce
the dimension of data is briefly presented as follows.

The original data set with N samples denoted as
ZT ¼ ½z1;…; zN �ARm�N , where m is the number of measurement
signals in each sample. Then, singular value decomposition (SVD)
is applied to the covariance estimation matrix of the observed data

Table 1
Formulation of kernel functions.

linear rxTi � xj
polynomial ðγxTi � xjþrÞd
radial basis function (RBF) e� γ J xi �xj J 2

sigmoid tanh ðγxTi � xjþrÞ

γ, rand d are parameters.

X. Gao, J. Hou / Neurocomputing 174 (2016) 906–911 907



Download English Version:

https://daneshyari.com/en/article/411624

Download Persian Version:

https://daneshyari.com/article/411624

Daneshyari.com

https://daneshyari.com/en/article/411624
https://daneshyari.com/article/411624
https://daneshyari.com

