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a b s t r a c t

This study deals with the input noise quadratic polynomial estimation problem for linear discrete-time
non-Gaussian systems. The design of the non-Gaussian noise quadratic deconvolution filter and fixed-lag
smoother is firstly converted into a linear estimation problem in a suitable second-order polynomial
extended system. By employing the Kronecker algebra rules, the stochastic characteristics of the aug-
mented noise in the augmented system are discussed. Then a solution to the non-Gaussian noise
quadratic estimator is obtained through applying the projection formula in Kalman filtering theory. In
addition, the stability is proved by constructing an equivalent state-space model with uncorrelated
noises. Finally, a numerical example is given to show the effectiveness of the proposed method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The input noise estimation (also known as deconvolution) has a
rich history and a wide range of applications in image restoration,
oil exploration, speech signal processing, fault detection and so on
[1–4]. The task of the deconvolution problem is to estimate the
intended unknown input noise of a system by utilizing the
obtainable outputs. For the first time, an optimal white noise
smoother with application to seismic data processing in oil
exploration was presented in [2]. Applying the polynomial
approach in frequency domain, the optimal deconvolution esti-
mator was derived based on spectral factorization in [5]. Later,
both input and measurement white noise estimators were
designed by using the modern time series analysis method in [6].
Recently, the deconvolution theory was successfully applied to the
multi-sensor linear discrete time systems [7,8] and the systems
with packet dropouts [9–11]. Note that the above results were
obtained based on the input Gaussian noise assumption, however,
in many important technical areas the input noise is non-Gaussian
(see for instance [12–14]). This is the motivation to develop a new
algorithm which permits us to find a satisfactory non-Gaussian
noise estimator for linear discrete-time time-varying systems.

The estimation problem for non-Gaussian systems has received
more and more attention and some fundamental results have been
developed, refer to [12,15] and the references therein. For linear
non-Gaussian systems, the conditional expectation giving the
minimum mean square error estimate is an infinite dimensional
problem, and its solution cannot be easily numerically computed
[15]. Although the Kalman filter is the best affine estimator for the
non-Gaussian case, its estimated accuracy is inadequate in some
cases. Note that the polynomial filtering algorithm [12,15], which
employ both the observations of the original system and their
Kronecker products, is more accurate than the classical Kalman
filter, while maintaining the characteristics of easy calculability
and recursivity. Therefore, an increasing number of authors have
focussed on the polynomial estimator design for the non-Gaussian
systems. The pioneer work can be traced back to the recursive
arbitrary-degree finite-memory polynomial estimator design via
the classical Kalman filtering theory [12]. Later, the result was
successfully extended to polynomial filter for stochastic bilinear
systems [16] and polynomial extended Kalman filter [17]. When
the state-space model was unknown, the fixed-point, fixed-
interval and fixed-lag smoothers from uncertain observations
were presented based on the covariance information of the pro-
cesses in [18]. Recently, this method was applied to the study of
multi-sensor information fusion quadratic filter for linear systems
with uncertain observations [19]. However, these works have a
limitation that the Non-Gaussian noise polynomial estimator was
not investigated.
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In this paper, we will investigate the non-Gaussian noise
quadratic estimation problem for linear discrete-time time-vary-
ing systems. The linear recursive estimator, the non-Gaussian
noise quadratic deconvolution filter and the non-Gaussian noise
quadratic fixed-lag smoother are proposed. The stability of the
non-Gaussian noise quadratic estimator is also discussed.
Although the deconvolution estimation has been well studied, the
non-Gaussian noise quadratic estimation is still difficult since the
stochastic characteristics analysis problem for the second-order
polynomial extended system involves the Kronecker product. To
solve this problem, some Kronecker algebra rules constituting a
powerful tool in treating vector polynomials are adopted in this
paper. The main contribution of this paper can be summarized as
follows: (i) it extends the polynomial filtering methodology to the
input noise estimation of the linear discrete-time time-varying
systems and (ii) it develops a recursive Kalman-like input noise
quadratic estimator with more accurately.

The remainder of this paper is arranged as follows. The linear
discrete-time non-Gaussian systems and the least mean-squared
error second-order polynomial estimation problem are introduced
in Section 2. In Section 3, the linear recursive estimator is devel-
oped by using Kalman filtering theory. In Section 4, the non-
Gaussian noise quadratic deconvolution filter and the non-
Gaussian noise quadratic fixed-lag smoother are derived by cal-
culating the extended Riccati difference equation. The stability
analysis of the non-Gaussian noise quadratic estimator is proposed
in Section 5. And an example is provided to prove the effect of the
presented estimator in Section 6. Finally, the conclusions are
proposed in Section 7.

2. System model and problem formulation

We consider the following class of linear discrete-time sys-
tems:

xðkþ1Þ ¼ AðkÞxðkÞþFðkÞNðkÞ;
xð0Þ ¼ x ð1Þ

yðkÞ ¼ CðkÞxðkÞþGðkÞNðkÞ ð2Þ

zðkÞ ¼ LðkÞNðkÞ ð3Þ
where xðkÞARn is the state, yðkÞARm is the measurement output,
zðkÞARq is the signal to be estimated, and the noise NðkÞARr forms
a sequence of non-Gaussian random vector variables, with all
moments up to the fourth order finite and known:

EðNðkÞÞ ¼ 0; EðN½i�ðkÞÞ ¼ΨN;i; i¼ 2;3;4: ð4Þ
Moreover, without loss of generality, we assume that

st�1ΨN;2 ¼ EðNðkÞ � NT ðkÞÞ ð5Þ
The sequence fNðkÞg forms, with the initial state random vector x, a
family of independent random variables. Also, the initial state x is
endowed with statical moments, namely

EðxÞ ¼ 0 ð6Þ

Eðx ½i�Þ ¼Ψ x;i; i¼ 2;3;4: ð7Þ
The non-Gaussian noise quadratic estimation problem for the

system model (1)–(3) can be stated as

Problem 1. Given an integer dZ0 and the observation sequence
ffyðsÞgkþd

s ¼ 0g, find a least mean-squared error second-order poly-
nomial estimator ẑðkjkþdÞ of z(k).

Note that the above estimation problem includes two cases, i.e.
d¼ 0 and d40 which correspond to the cases of non-Gaussian

noise quadratic filtering estimate and non-Gaussian noise quad-
ratic fixed-lag smoothing estimate, respectively.

3. The linear recursive estimator

Let us find the linear recursive estimator for system (1)–(3). By
using the classical Kalman filtering theory, we state the linear
deconvolution filtering of z(k) in the following lemma.

Lemma 1. Consider the system (1)–(3) under the assumptions (4)–
(7). Then the linear deconvolution filter ẑðkjkÞ of z(k) is given by

ẑðkjkÞ ¼ LðkÞðst�1ΨN;2ÞGT ðkÞR�1
~y ðkÞ ~yðkÞ ð8Þ

where

~yðkÞ ¼ yðkÞ�CðkÞx̂ðkjk�1Þ ð9Þ

x̂ðkþ1jkÞ ¼ AðkÞx̂ðkjk�1ÞþK0ðkÞ ~yðkÞ ð10Þ

K0ðkÞ ¼ AðkÞP0ðkÞCT ðkÞþFðkÞðst�1ΨN;2ÞGT ðkÞ
� �

R�1
~y ðkÞ ð11Þ

R ~y ðkÞ ¼ CðkÞP0ðkÞCT ðkÞþGðkÞðst�1ΨN;2ÞGT ðkÞ ð12Þ

P0ðkþ1Þ ¼ AðkÞP0ðkÞAT ðkÞþFðkÞðst�1ΨN;2ÞFT ðkÞ�K0ðkÞR ~y ðkÞKT
0ðkÞ

P0ð0Þ ¼ st�1Ψ x;2 ð13Þ

Furthermore, we present the linear fixed-lag smoother of z(k)
in the following lemma.

Lemma 2. Consider system (1)–(3) under the assumptions (4)–(7).
Then, for a given integer d40, a linear fixed-lag smoother ẑðkjkþdÞ
of z(k) is given by

ẑðkjkþdÞ ¼ ẑðkjkÞþLðkÞ
Xd
j ¼ 1

Γk
kþ jC

T ðkþ jÞR�1
~y ðkþ jÞ ~yðkþ jÞ ð14Þ

where

Γk
kþ jþ1 ¼Γk

kþ j½Aðkþ jÞ�K0ðkþ jÞCðkþ jÞ�T
j¼ 1;2;…; d�1 ð15Þ
with

Γk
kþ1 ¼ ðst�1ΨN;2ÞFT ðkÞ�ðst�1ΨN;2ÞGT ðkÞKT

0ðkÞ ð16Þ
Besides, ẑðkjkÞ, ~yðkþ jÞ, K0ðkþ jÞ and R ~y ðkþ jÞ are computed by (8),
(9), (11) and (12), respectively.

4. The quadratic recursive estimator

4.1. The extended state-space model

In order to obtain the estimator for system (1)–(3), let us define
the following extended vector:

XeðkÞ ¼
xðkÞ
x½2�ðkÞ

" #
ð17Þ

According to Eqs. (1), (4) and (5), we have

x½2�ðkþ1Þ ¼ xðkþ1Þ � xðkþ1Þ ¼ ½AðkÞxðkÞþFðkÞNðkÞ�
�½AðkÞxðkÞþFðkÞNðkÞ� ¼ A½2�ðkÞx½2�ðkÞþðAðkÞxðkÞÞ
�ðFðkÞNðkÞÞþðFðkÞNðkÞÞ
�ðAðkÞxðkÞÞþF ½2�ðkÞN½2�ðkÞ ¼ A½2�ðkÞx½2�ðkÞþdðkÞþ f ðkÞ

ð18Þ
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