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a b s t r a c t

3D shape features play a crucial role in graphics applications, such as 3D shape matching, recognition,
and retrieval. Various 3D shape descriptors have been developed over the last two decades; however,
existing descriptors are handcrafted features that are labor-intensively designed and cannot extract
discriminative information for a large set of data. In this paper, we propose a rapid 3D feature learning
method, namely, a convolutional auto-encoder extreme learning machine (CAE-ELM) that combines the
advantages of the convolutional neuron network, auto-encoder, and extreme learning machine (ELM).
This method performs better and faster than other methods. In addition, we define a novel architecture
based on CAE-ELM. The architecture accepts two types of 3D shape representation, namely, voxel data
and signed distance field data (SDF), as inputs to extract the global and local features of 3D shapes. Voxel
data describe structural information, whereas SDF data contain details on 3D shapes. Moreover, the
proposed CAE-ELM can be used in practical graphics applications, such as 3D shape completion.
Experiments show that the features extracted by CAE-ELM are superior to existing hand-crafted features
and other deep learning methods or ELM models. Moreover, the classification accuracy of the proposed
architecture is superior to that of other methods on ModelNet10 (91.4%) and ModelNet40 (84.35%). The
training process also runs faster than existing deep learning methods by approximately two orders of
magnitude.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

3D shape feature extraction is a vital issue covered in the high-
level understanding of 3D shapes. Extensive efforts have been
exerted to solve this important problem with the aid of recent
advances on deep learning techniques. Existing feature extraction
approaches based on deep learning can be broadly categorized as
semi-automatic and fully-automatic methods.

In semi-automatic methods such as [1,2], researchers first
extract several popular hand-crafted features from input 3D
shapes and then utilize deep learning methods to combine these
features further. This category of methods relies strongly on the
adopted human-designed features. The extraction of these fea-
tures consumes much time; hence, these methods cannot handle
large-scale 3D datasets.

Numerous fully automatic deep learning methods have been
proposed recently, such as convolutional deep belief network
(CDBN) [3], auto-encoder (AE) [4], deep Boltzmann machines [5],

convolutional neuron network (CNN) [6], and stacked local con-
volutional AE [7] approaches. These techniques are utilized to
learn 3D features given the feature learning capability of these
methods. In addition, these methods were first proposed for 2D
image classification tasks.

3D shapes with reasonable resolutions have the same dimen-
sions as high-resolution images. Thus, training deep networks on
large-scale 3D datasets is time consuming. Furthermore, mastering
this category of feature learning methods consumes time because
of the black-box property of the deep learning method. Most of
these deep learning methods convert 3D shapes into 2D repre-
sentations for input [7–9]; thus, much of the 3D geometry infor-
mation of 3D shapes is lost. Several works [3,10] attempt to apply
3D cubes, such as the volumetric representations of 3D shapes, as
inputs. However, the training processes of these works are time
consuming because of the additional dimension of input data.
Therefore, the input resolution of these methods is limited.

To overcome the shortcomings of the existing methods, we
propose a novel 3D shape feature extraction method called con-
volutional AE extreme learning machine (CAE-ELM) in this paper.
This approach combines the advantages of CNN, AE, and extreme
learning machine (ELM). AE is a typical unsupervised learning
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algorithm that can extract good features without supervised labels.
However, the AE network is fully connected; thus, additional para-
meters must be learned. CNN restricts the connections between the
hidden layer and the input layer through locally connected net-
works. Nevertheless, this network is an extensive computational
method that is used with 3D shape datasets because of its con-
volutional operation. To reduce computational complexity, ELM [11]
is often considered for its high efficiency and effectiveness.

Additionally, different input representations exert varied
effects. For example, voxel data describe the structural information
of 3D shapes because these data are expressed only as 0 and 1,
which indicate that the voxel is outside and inside the mesh sur-
face, respectively. Signed distance field (SDF) data are represented
as a grid sampling of the minimum distance to the surface of an
object that is represented as a polygonal model. The convention of
applying negative and positive values within and outside the
object, respectively, is frequently applied; thus, additional 3D
shape details can be derived. To extract the global and local fea-
tures collectively, we define a novel architecture that accepts both
voxel and SDF as inputs. By combining these two types of data, our
architecture can classify 3D shapes effectively.

The proposed CAE-ELM can also be used in practical graphics
applications, such as in 3D shape completion. Optical acquisition
devices often generate incomplete 3D shape data because of
occlusion and unfavorable surface reflectance properties. These
incomplete 3D shapes are challenging to repair; to fix incomplete
data, we compare the features of broken and complete shapes
before the CAE-ELM classifier as well as obtain the broken loca-
tions and values. Although the completion results are imperfect,
CAE-ELM serves as a new approach to solve this problem.

The contributions of our approach are summarized as follows:

(1) CAE-ELM: We propose a new ELM-based designed network
that performs well and learns quickly. To the best of our
knowledge, our proposed model is the first to combine the
advantages of CNN, AE, and ELM to learn the features of 3D
shapes. This method has been used in practical graphics
applications. We provide the source code1 so that researchers
can master it in a short time.

(2) Increased classification accuracy: The classification accuracy of
the designed architecture is higher than that of other methods
[10,12,13,9] on ModelNet10 (91.41%) and ModelNet40
(84.35%).

(3) 3D shape completion: CAE-ELM can repair a broken 3D shape
by using the features before the classifier.

(4) Rapid 3D shape feature extraction: Our method runs faster than
existing deep learning methods by approximately two orders
of magnitude, thus facilitating large-scale 3D shape analysis.

The experiment results show that the features learned by CAE-
ELM significantly outperform hand-crafted features and other deep
learning methods in terms of 3D shape classification. CAE-ELM can
also repair the broken locations of 3D shapes with learned features
for 3D shape completion. Furthermore, our method is efficient and
easy-to-implement; thus, it is practical for real 3D applications.

2. Related work

2.1. 3D shape descriptors

3D shape descriptors play a crucial role in graphics applications
such as 3D shape matching, recognition, and retrieval [14–17].

A variety of 3D shape descriptors have been developed during
the last two decades [18,13,19,15]. Existing 3D descriptors are
hand-crafted features which are labor-intensively designed and
are unable to extract discriminative information from the data.
Instead, we learn shape features from 3D shapes using auto-
matically feature learning method.

2.2. 3D feature learning via deep learning

Researchers have successfully built deep models, such as con-
volutional neural network (CNN) [20], deep autoencoder networks
[21], deep belief nets (DBN) [22] and extreme learning machine
(ELM) [23] and etc., to automatically extract features with the
superior discriminatory power for 2D image and shape repre-
sentation in computer vision and machine learning [24]. A few
very recent works attempt to learn 3D shape features via deep
learning methods.

Zhang et al. [25] use ELM to determine an optimal fabrication in
3D printing considering a perceptual model. Wu et al. [3] use
voxelization of 3D meshes as network's input and adopt 3D deep
belief nets (DBN) [22] as their networks. Their work obtains good
results on a subset of Princeton ModelNet [3]. However, their
method is timing consuming and discards the pooling operations
in CDBN, which makes their network fail to handle shape rotation
invariance. As a result, they have to manually align all the input
meshes into the same direction, in order to avoid uncertainty in
extracting their features. Zhu et al. [4] use autoencoder to learn a
3D shape feature based on the depth images. However, they treat
2.5D depth images as traditional 2D images and can only get the
global feature, which make their method have to combine with
hand-crafted 2D image features (SIFT) to finish the 3D shape
classification task. Xie et al. [9] propose Multi-View Deep Extreme
Learning Machine (MVD-ELM) which adopts the multi-view depth
image representation can achieve fast and quality projective fea-
ture learning for 3D shapes. However, as mentioned before, using
2.5D depth images as the input of network will lose 3D geometry
and structure information of 3D shapes, and further influences the
classification accuracy. Our method can handle large scale of 3D
shapes with large rotation and geometry invariance through using
voxel and SDF representations of 3D shapes. Moreover, due to the
efficiency of ELM, our method runs faster than existing deep
learning methods by approximately two orders of magnitude.

2.3. Extreme learning machines

Extreme learning machines (ELM) was proposed for general-
ized single-hidden layer feedforward neural network (SLFNs)
[11,26,27] where the hidden layer need not be neuron alike. Unlike
other neural networks with back propagation (BP) [28], the hidden
nodes in ELM are randomly generated, as long as the activation
functions of the neurons are nonlinear piecewise continuous. The
weights between the hidden layer and the output layer have
analytical solution and can be calculated using a formula. There
are two phases in training process of ELM: feature mapping and
output weights solving.

ELM feature mapping: Given input data xARD, the output
function of ELM for generalized SLFNs is

f ðxÞ ¼
XL
i ¼ 1

βihiðxÞ ¼ hðxÞβ; ð1Þ

where hðxÞ ¼ ½h1ðxÞ;⋯;hLðxÞ� is the output vector of the hidden
layer and β¼ ½β1;⋯;βL�T denotes the output weights between the
hidden layer (L nodes) and the output layer (m nodes). The pro-
cedure of getting h is called ELM feature mapping which maps the
input data from RD to the feature space RL. In real applications, h1 https://github.com/yqwang2006/CAE-ELM
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