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a b s t r a c t

The problem of globally asymptotic stability for nonnegative equilibrium points of genetic regulatory
networks (GRNs) with time-varying discrete delays and unbounded distributed delays is considered. So
far, there are very few results concerning the problem; and in which the nonnegativity of equilibrium
points is neglected. In this paper, the existence of nonnegative equilibrium points is firstly presented.
Then, by using the nonsingular M-matrix theory and the functional differential equation theory, M-
matrix-based sufficient conditions are proposed to guarantee that the kind of GRNs under consideration
here has a unique nonnegative equilibrium point which is globally asymptotically stable. The M-matrix-
based stability criteria derived here can be easily verified, since they are to check whether a constant
matrix is a nonsingular M-matrix. Several numerical examples are offered to illustrate the effectiveness
of the approach proposed in this paper.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In order to understand interactions among messenger Ribonucleic
Acids (mRNAs) and proteins, the concept of genetic regulatory net-
works (GRNs) was first proposed in 1960s. Since then, GRNs have
received wide attention from many experts and scholars [1–7]. Based
on the theoretical analysis and simulation experiments, several sim-
ple GRN models have been successfully established in the past two
decades. Basically, there are two types of models for GRNs, that is, the
differential equation model [1–3,7,8] and the Boolean model [5,6]. In
GRNs, mRNAs and proteins may be synthesized at different locations;
thus, the transcription or the diffusion of mRNAs and proteins among
these locations results in sizable delays [1]. Therefore, a GRN model
without consideration of delay is generally inaccurate, and even
provides wrong predictions [1,7,8]. A functional differential equation
is a differential equation including delayed states. So, it is more
accurate to model GRNs by functional differential equations, which
can better show the nature of life. Moreover, the functional differ-
ential equations have been used to describe various practical systems,
including systems of infectious diseases and epidemics [9,10],

population dynamics [11], neural networks [12,13], vehicle active
suspension [14], and biological and chemical kinetics [15,16].

As we all know, stability is one of the most important proper-
ties for any dynamic system. Since the time delays often lead to
poor performance of systems, and even make system instable
[12,17–20], a great number of sufficient conditions’ testing stabi-
lity of equilibrium points of GRNs, modeled by functional differ-
ential equations only with discrete delays, have been proposed
(see [1,7,21–25] and the references therein). In addition, for indi-
vidual molecules, movement of mRNA from a transcription site to
translation sites is an active process with a significant range of
transport times, so it is significant and necessary to model GRNs
by using functional differential equations with mixed (i.e., discrete
and distributed) delays [8]. And stability criteria for GRNs only
with discrete (distributed) delays are generally unavailable for
GRNs with mixed delays. For this reason, the stability analysis for
equilibrium points of GRNs with mixed delays has received more
and more attention from experts and scholars (see [8,26–30] and
the references therein). All of these stability criteria established in
these papers except [8] are in the form of linear matrix inequalities
(LMIs). In order to reduce conservativeness of LMI-based stability
criteria, some useful approaches have been introduced, e.g., delay
decomposition approach [28], reciprocally convex combination
approach [26], augmented Lyapunov functional approach [29],
free-weighting matrix approach [27,29], convex combination
approach [27] and delay-probability-distribution-based model
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transformation approach [27,30]. These approaches are generally
available for reducing conservativeness, but they will also increase
the number of LMIs or variables in LMI(s), which results in the
computational complexity. For this reason, the so-called M-
matrix-based approach has been proposed by Zhang, Wu and
Zou in [8] to infer the stability for equilibrium points of GRNs with
time-varying discrete delays and constant distributed delays.
Compared with the LMI-based stability criteria, an M-matrix-
based one possesses less computational complexity because it
needs only to verify whether a constant matrix is a nonsingular M-
matrix. It is worth emphasizing that, for GRNs with discrete and
unbounded distributed delays, Zhang et al.'s approach in [8] is
available to present existence conditions of nonnegative equili-
brium point; however, it does not apply to establish M-matrix-
based globally asymptotic stability criteria, since the Lyapunov
function employed in [8] is invalid to the unbounded distributed
delays. Therefore, it is interesting and important to give M-matrix-
based stability criteria for equilibrium points of the GRNs with
discrete and unbounded distributed delays.

In this paper we will develop an M-matrix-based approach to
establish globally asymptotic stability criteria for nonnegative
equilibrium points of the GRNs with time-varying discrete delays
and unbounded distributed delays. Firstly, the problem formulation
and some preliminary results are presented (see Section 2 below).
Then, based on the nonsingular M-matrix theory and the func-
tional differential equation theory, M-matrix-based sufficient
conditions are given to guarantee that the kind of GRNs under
consideration here has a unique nonnegative equilibrium point
which is globally asymptotically stable (see Section 3 below).
Finally, the effectiveness of the theoretical results obtained in this
paper is illustrated by the simulation results of several numerical
examples (see Section 4 below).

In addition, the globally asymptotic stability criteria obtained in
this paper are also available for GRNs only with discrete delays by
setting V¼0. In this case, the results of this paper can be viewed as
a extensive and supplementary version of the corresponding
results in [7,8,21,24,25].

Notation: Throughout this paper, the set of real numbers will be
denoted by R. Let Rn�m represent the set of all n�m matrices over
R. Set Rn ¼Rn�1. For a matrix A¼ ½aij�ARn�m, we use jAj to denote
the n�m matrix ½jaij j �, and use χ jðAÞ to denote the number of
nonzero elements in the jth row of A. Set χðAÞ ¼ diagðχ1ðAÞ;
χ2ðAÞ;…; χnðAÞÞ. For two real matrices A¼ ½aij� and B¼ ½bij�, we say
ArB (AoB) if aijrbij (aijobij) for all i and j, and we denote by

A○B the Hadamard product of A and B, that is A○B¼ ½aijbij�. For
given positive numbers a1; a2;…; an, let Λa denote the diagonal
matrix diagða1; a2;…; amÞ. Let ‖ � ‖2 represent the 2-norms of vec-
tors or matrices. A connected subset of R is called an interval. For
given an interval J and a positive integer n, the set of all con-
tinuous functions h : J-Rn is denoted by CðJ;RnÞ. It is a linear
space with respect to the usual operations on functions, and is
further a Banach space with respect to the norm J � J defined by

JhJ ¼ sup
sAJ

‖hðsÞ‖2; 8hACðJ;RnÞ:

Let Cðð�1;0�;RnÞ be the Banach space of functions ψACðð�1;0�;
RnÞ such that ψis bounded and uniformly continuous, with norm

‖ψ‖C≔ sup
�1o sr0

‖ψ ðsÞ‖2þ
Z 0

�1
‖ψ ðsÞ‖2 dso1:

Superscript T denotes the matrix transposition.

2. Problem formulation

GRNs describe how the interactions among mRNAs and pro-
teins, and are usually modeled as [1,8]:

_miðtÞ ¼ �kmimiðtÞþ
Xn
j ¼ 1

f ijgjðpjðt�τpjðtÞÞÞþ Ji; tZ0; ð1aÞ

_piðtÞ ¼ �kpipiðtÞþrimiðt�τmiðtÞÞ; tZ0; ð1bÞ

miðtÞ ¼φiðtÞ; piðtÞ ¼ψ iðtÞ; tA ½�d;0�; ð1cÞ
(see Fig. 1 for an intuitive explanation [31]) where iA 〈n〉, mi(t) and
pi(t) denote the concentrations of mRNA i and protein i at time t,
respectively; kmi and kpi are positive real numbers that denote the
degradation rates of mRNA i and protein i, respectively; ri is a positive
real number that denotes the rate of translation from mRNA i to
protein i; gjðxÞ ¼ ðx=bjÞhj=ð1þðx=bjÞÞhj , bj is a positive scalar, and hjZ
1 is the Hill coefficient that denotes the degree of cooperativity;

f ij ¼
�aij if transcription factor j represses gene i;

0 if transcription factor j does not regulate i;

aij if transcription factor j activates gene i;

8><
>:

aij is the dimensionless transcriptional rate of transcription factor j to
gene i, which is nonnegative and bounded constant; Ji ¼

P
jA Si

aij,
Si ¼ fj : jA 〈n〉; f ijo0g; φi;ψ iACð½�d;0�;RnÞ, d¼maxfτm; τpg with

Fig. 1. Genetic regulatory network with a feedback loop for transcription and translation processes.
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