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a b s t r a c t

This paper investigates the fault-tolerant controller for hypersonic aircraft in case of actuator fault. The
robust adaptive controller is designed using command filtered back-stepping scheme. The uncertainty
caused by the fault is approximated by randomly assigning nodes of the RBF single-hidden layer feed-
forward network (SLFN). The output weight is updated based on the Lyapunov synthesis approach to
guarantee the stability of the overall control system. The method is applied on the control-oriented
model whose subsystems are written into the linearly parameterized form. Simulation results show that
the proposed approach achieves good tracking performance.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hypersonic flight control [1–5] is challenging since the long-
itudinal model of the dynamics is sensitive. In literature, several
models have been investigated such as winged-cone model [2],
the control oriented model [6] and the nonlinear longitudinal
model [7]. The main difficulty of the control law design for the
hypersonic aircraft is due to the high complexity of the motion
equations and there is little knowledge of the aerodynamic para-
meters of the vehicle.

With unknown dynamics, there are two ways to design the
adaptive controller. One is referred to intelligent control [8–10].
The idea is mainly on using neural networks (NNs) or fuzzy logic
system (FLS) to approximate the unknown dynamics. In [11], the
neural control of hypersonic flight dynamics is analyzed with
singularly perturbed system approach. In [12], the altitude sub-
system of the genetic longitudinal dynamics is with cascade
structure, and it is written into the strict-feedback form. Further-
more, the dynamics is transformed into the output feedback form
and the neural control based on high gain observer is constructed.
The design is further improved in [13] with minimal learning
parameter technique. In [14–16], the back-stepping control is
designed by using Euler expansion of the continuous dynamics
while in [17] the design is with prediction function. The other way

is to write the unknown dynamics into the linearly parameterized
form [18]. Using the parameter estimation, the dynamic surface
control is studied in [19].

Despite the uncertainty, different control problems are also
widely studied. The flexible effect is analyzed in [20] while in [21],
the aerothermoelastic effects are considered. In [19], the case with
actuator constraint is studied. In reality, physical components may
become faulty, which can cause deterioration in system perfor-
mance and lead to instability. In [22], the comprehensive review
on active and passive design is discussed while in [23,24], the
design on flight control is analyzed. In [25], the system fault of
near space vehicle is reviewed. In [26,27], the fault tolerant control
for hypersonic flight dynamics with multiple actuators is studied.
In general, the learning-based active FTC can accommodate more
related systems. However, during the controller design with NNs,
usually the fault could not be known exactly so that we have no
prior information to design the structure. More specifically, we do
not know how to select the nodes and parameters. Fortunately,
extreme learning machine [28–30] can achieve learning by ran-
domly generating hidden node without the knowledge of the
training data [31,32]. The tracking of an unmanned surface vehicle
suffering from unknown dynamics and external disturbances with
an extreme learning is proposed in [33]. In [34] the constructive
and destructive parsimonious extreme learning machines are
proposed. The dynamics identification with extreme learning
machine can be found in [35].

In this paper, considering the control-oriented model [6] of
hypersonic aircraft, the robust adaptive controller is proposed
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with parameter estimation and learning FTC in the presence of
uncertain dynamics and actuator fault by randomly assigning
the nodes.

This paper is organized as follows. SLFN is illustrated in Section
2. The HFV dynamics are demonstrated in Section 3. Section 4
presents the FTC control. The simulation is presented in Section 6.
Section 7 presents several comments and final remarks.

2. SLFN

For N arbitrary distinct samples ðxi; tiÞ, where xi ¼
½xi1; xi2;…; xin�T ARn and ti ¼ ½ti1; ti2;…; tim�T ARm, standard SLFN
with ~N hidden neurons can be expressed as follows:

X~N
i ¼ 1

βiGðxj;wi; biÞ ¼ oj; j¼ 1;…;N ð1Þ

where wi ¼ ½wi1;wi2;…;win�T and bi are the learning parameters of
hidden nodes, βi ¼ ½βi1;βi2;…;βim�T is the weight vector connect-
ing the ith hidden neuron and the output neurons and Gðxj;wi; biÞ
is the output of the ith hidden node with respect to input xj.

Let x¼ ½x1; x2;…;xN �, w¼ ½w1;w2;…;w ~N � and b¼ ½b1; b2;…;

b ~N �. The standard SLFN with ~N hidden neurons each with function
g(x) can approximate these N samples with zero error means thatPN

j ¼ 1 Joj�tj J ¼ 0; i.e., there exist βi, wi and bi such that

H x;w;bð Þβ¼ T ð2Þ
in which

Hðx1;…;xN ;w1;…;w ~N ; b1;…; b ~N Þ ¼
Gðx1;w1; b1Þ ⋯ Gðx1;w ~N ; b ~N Þ

⋮ ⋯ ⋮
GðxN;w1; b1Þ ⋯ GðxN;w ~N ; b ~N Þ

2
64

3
75
N� ~N

;

β¼

βT
1

⋮
βT

~N

2
66664

3
77775

~N�m

and T¼
tT1
⋮
tTN

2
64

3
75
N�m

In the case of ~N⪡N and H being a nonsquare matrix, one may be
interested to find ŵ i; b̂i; β̂ i ði¼ 1;…; ~NÞ such that

JHðŵ1;…; ŵ ~N ; b1;…; b ~N Þβ̂�TJ ¼ min
wi ;bi;β

JHðw1;…;w ~N ; b1;…; b ~N Þβ�TJ

ð3Þ
For RBF hidden nodes with Gaussian function gð�Þ, Gðxj;wi; biÞ is
given by

G xj;wi;bi
� �¼ g bi Jxj�wi J

� � ð4Þ
where wi and bi are the center and impact factor of the ith RBF
node. The RBF network is a special case of SLFN with RBF nodes in
its hidden layer. Each RBF node has its own centroid and impact
factor and its output is given by a radially symmetric function of
the distance between the input and the center.

3. Hypersonic aircraft model

3.1. Flight dynamics

Consider the control-oriented model of the longitudinal
dynamics of a generic hypersonic aircraft from [6] with five
equations

_V ¼ T cosα�D
m

�g sin γ ð5Þ

_h ¼ V sin γ ð6Þ

_γ ¼ LþT sinα
mV

�g cos γ
V

ð7Þ

_α ¼ q� _γ ð8Þ

_q ¼Myy

Iyy
ð9Þ

This model is composed of five state variables Xh ¼ V ;h;α; γ; q
� �T

and two control inputs Uh ¼ δe;Φ
� �T .

Given the reference signal hr, the altitude tracking error is
defined as ~h ¼ h�hr . The following flight path angle command is
selected:

γd ¼ arcsin
�kh ~h�ki

R ~h dtþ _hr

V

 !
ð10Þ

where kh40, ki40 are positive constants.
Define x1 ¼ γ; x2 ¼ θp; x3 ¼ q, θp ¼ αþγ, uf ¼ δe. The following

subsystem is obtained:

_x1 ¼ g1x2þ f 1� f 0
_x2 ¼ x3
_x3 ¼ g3uf þ f 3 ð11Þ

where

f 0 ¼ � g
V
cos x1; f 1 ¼

L0�LαγþT sinα
mV

¼ωT
f1θf1

g1 ¼
Lα
mV

¼ωT
g1θg1; f 3 ¼

MT þM0 αð Þ
Iyy

¼ωT
f3θf3;

g3 ¼
Mδe
Iyy

¼ωT
g3θg3

The actuator fault is considered as

uf ðtÞ ¼
uðtÞ; to5
uðtÞþ f ; tZ5

(
ð12Þ

where f¼0.1, u(t) is the signal to be designed.
For more detail of the definition, refer to [19] for more detail.

3.2. Control goal

By functional decomposition, the dynamics can be decoupled
into two functional subsystems named attitude subsystem and
velocity subsystem. Given the tracking reference Vr and hr, the
velocity and altitude controllers are designed respectively in case
of uncertain parameters and unknown system fault.

4. Controller design for attitude subsystem

The controller design is mainly on command filter technique
[36]. In the final step, the system fault is approximated by ran-
domly assigning the nodes.

Step 1: Define ~x1 ¼ x1�x1d. Take θp as virtual control and design
x2c as

ĝ1x2c ¼ �k1 ~x1� f̂ 1þ f 0þ _x1d� ĝ1ξ2 ð13Þ
where k140 is the design parameter, f̂ 1 ¼ωT

f1θ̂ f1, ĝ1 ¼ωT
g1θ̂g1, ξ2

will be defined in Step 2.
Introduce a new state variable x2d, which can be obtained by

the following first-order filter:

ε2 _x2dþx2d ¼ x2c; x2d 0ð Þ ¼ x2c 0ð Þ ð14Þ
Introduce signal ξ1
_ξ1 ¼ �k1ξ1þ ĝ1 x2d�x2cð Þ; ξ1ð0Þ ¼ 0 ð15Þ
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