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h i g h l i g h t s

• Automatic calibration algorithms for 2-D LiDARs on board aerial vehicles.
• No a priori knowledge of the trajectories or the terrain are necessary.
• Use of geometric optimization techniques on SO(3).
• Extensive characterization of the proposed methods using simulated data.
• Validation of the proposed methods using experimental data.
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a b s t r a c t

This paper proposes two estimation algorithms for the determination of the attitude installation matrix
for 2-D light detection and ranging (LiDAR) systems on board unmanned aerial vehicles (UAVs). While
a comparative calibration algorithm assumes the existence of a known calibration surface, an automatic
calibration algorithm does not require any prior knowledge of the trajectories of the vehicle or the terrain
where the calibrationmission is performed. The proposed calibration algorithms rely on theminimization
of the errors between the measured point cloud and a representation of the known calibration surface or,
alternatively, the errors between several acquired point clouds, by comparing eachmeasured point cloud
with a surface representation of the others. The resulting optimization problems are addressed using two
techniques: (i) nonlinear optimization, where the attitude installation rotation matrix is parameterized
by the ZYX Euler angles, and (ii) optimization on Riemannian manifolds, enabling the estimation of the
attitude installation matrix on the group of special orthogonal matrices SO(3). The proposed calibration
techniques are extensively validated and compared using both simulated and experimental LiDAR data
sets, demonstrating their accuracy and performance.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Light detection and ranging (LiDAR) technology is nowadays
widely used in the industry as well as by the robotics and the
remote sensing research communities. The development of air-
borne laser ranging sensors started in the 1970s in North America,
mainly for topographic applications. Later, with the development
of affordable inertial navigation systems (INS) and global position-
ing system (GPS) units, other applications captured the attention
of the research community, such as monitoring ice sheets [1] or
measuring canopy heights [2]. The robotics research community is
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nowadays employing autonomous vehicles equipped with LiDARs
to perform automatic acquisition and 3-dimensional (3-D) recon-
struction of terrain, buildings, large infrastructures, and to obtain
semantic descriptions of complex environments [3,4], using this
information to safely and accurately navigate through unknown
environments [5,6]. Data accuracy is essential for all these appli-
cations, as there are several sources of inaccuracy that can lead to
considerable nonlinear reconstruction errors.

The calibration of 2-D LiDARs on board an autonomous vehi-
cle capable of complex 3-D motion, is one of the most challeng-
ing problems in the extrinsic calibration of LiDAR sensors. There is
comprehensive work in the literature that is dedicated to the anal-
ysis of the intrinsic and extrinsic LiDAR error sources, such as in
[7,8] and references therein. Namely, the identified error sources
include the attitude and position installation biases, range de-
tection errors, scanning angle errors, vehicle attitude and posi-
tion errors, time synchronization errors, etc. While most intrinsic
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errors can be identified and accounted for with laboratory exper-
iments using the sensor, the installation biases are highly depen-
dent on the vehicle and mounting apparatus. It is argued by these
authors that the attitude installation bias, also simply referred to
as the mounting bias, is a particularly important source of error in
LiDAR systems. For instance, an airborne LiDAR acquiring terrain
elevation 300 m above the ground, with 1° of roll mounting bias
will generate points with more than 5 m of error. Moreover, when
working with rough terrain with high slopes the distortions can
become highly nonlinear, which further motivates the necessity of
the calibration of these errors, in particular, the attitude installa-
tion bias, to meet the desired accuracy requirements.

1.1. Relevant work

Most applications requiring a three-dimensional (3-D) recon-
struction of the surrounding environment use one or several Li-
DARs installed on board a vehicle equipped with an INS/GPS unit,
which provide measurements of the relative distances to the ter-
rain and the trajectory of the vehicle, respectively. To obtain con-
sistent and accurate 3-Dmaps it is possible to formulate a problem
that makes use of some characteristics of the environment to ad-
just potential errors in the obtained point cloud and vehicle trajec-
tory, as in [9,10], or address the calibration of LiDAR sensors as a
separate problem prior to the intended 3-D environment data ac-
quisition.

The most common calibration procedures require particular
terrain features and specific vehicle trajectories in order to cali-
brate a subset of the parameters, as found in [11]. For instance, a
standard procedure in the literature for airborne LiDAR calibration
would be to fly over a known flat surface while performing pitch
or roll maneuvers, separately, which would enable the calibration
of only these two parameters. Nonetheless, several difficulties ren-
der the problem of 2-D LiDAR attitude installation calibration spe-
cial, including the absence of any matching information between
the measured point clouds and a known calibration surface, and
also the fact that, with each calibration correction step, the recon-
structed clouds of points will change their shape in a nonlinear
fashion, accordingly to the vehicle trajectory and the terrain.

There are two fundamental approaches in the literature to com-
pare two clouds of points when there is no matching information
between them. The first approach is to use a point-to-point metric,
as in the by-now classic iterative closest point (ICP) algorithm [12],
and assign to each point of one cloud a matching point of the
other cloud. An alternative approach is to use a point-to-planemet-
ric and, thus, to measure the closest distance between each point
of one cloud to a surface approximation of the other cloud [13].
As the surface information is not taken into account in point-to-
point based techniques, they suffer from the inability to slide over-
lapping clouds to find a better fit between them, demonstrating
slower convergence rates than the point-to-plane alternatives [14].

To reduce the conservativeness of the calibration procedures
of 2-D LiDAR sensors, new algorithms were proposed in [15,16],
where the measured point cloud is compared with a plane-wise
representation of the known calibration surface to obtain the cali-
bration parameters. These authors consider the linearization of the
error model to obtain a Gauss–Helmert model and then obtain the
least-squares estimate of the installation bias. This approach was
refined in [17] by considering the full nonlinearmodel of the recon-
struction error and, consequently, resorting to nonlinear optimiza-
tion techniques to obtain the optimal calibration parameters. More
recently, specially with the use of expensive 3-D LiDARs installed
on ground vehicles, several strategies have been proposed, such as
those presented in [18,19], for LiDAR calibration that rely on the
detection and association of artificial features in the point clouds.
Nonetheless, the major drawback of these techniques is that they

make strong assumptions about the environment where the cal-
ibration procedure takes place, either assuming complete knowl-
edge of the calibration surface or adding artificial marks to enable
feature based association.

An alternative for the pose calibration of sensors is the joint for-
mulation of the calibration, localization, and mapping problems
into a single problem. In this approach, the typical state of a si-
multaneous localization and mapping problem (SLAM), such as
[6,20,21], is augmented to include the intrinsic or extrinsic vari-
ables to be calibrated. For instance, in [22] the authors proposed a
method rooted on graph-based SLAM to obtain the robot position
in the mapped environment, the LiDAR position on the robot, as
well as the kinematic variables of the robot. For the case of camera
calibration, a method based on the unscented Kalman filter (UKF)
SLAM is proposed in [23] for obtaining themap of the environment,
the pose of the vehicle, and the pose of the camera relative to the
vehicle.

Within the field ofmobile robotics, the calibration of 3-D LiDARs
on board ground vehicles has been addressed in [24,25]. The for-
mer uses a point-to-plane metric to define a cost function, based
on Euler angles for the attitude installation bias, and a heuristic
search in several directions to avoid local minima. The later re-
sorts to an entropy-based point cloud quality metric, which allows
for the calibration of a 3-D LiDAR sensor using several overlapping
3-D scans, and based on this calibrated point cloud, any 2-D LiDAR
on board the vehicle can also be calibrated. However, noting that
both thesemethods rely on the use of 3-D LiDARdata, the proposed
calibrationmethodswould not be appropriate if only one statically
mounted 2-D LiDAR was used for data acquisition. Furthermore,
using an entropy-based point cloud qualitymetricmight not be the
best approach to use all the available information (see Appendix A)
provided by the type of point clouds obtainedwith airborne 2-D Li-
DARs, as two uncalibrated point cloudsmight only be close to each
other within a small boundary close to their intersection (as can be
seen in Fig. 12(a)).

1.2. Proposed approach

The algorithms proposed in this work can cope with arbitrary
vehicle 3-D motion and terrain topology, yielding accurate cali-
bration of airborne 2-D LiDAR sensors. It is assumed that there is
enough information on the calibration terrain and vehicle trajec-
tories to enable the full attitude installation bias calibration. One
obvious counter-example would be a flat terrain, thus, with no
relevant topological features, for which there would always be
one uncalibrated degree of freedom. The proposed methods use a
point-to-plane metric to compare each acquired point cloud with
either a known calibration surface or a surface approximation of all
the remaining acquired point clouds, by measuring the minimum
distance of each point to the approximated surface. A fully nonlin-
earmodel of the calibration errors is also defined, either using Euler
angles or rotation matrices, thus avoiding the linearization prob-
lems of many works in the existing literature. In addition, by using
rotation matrix representation of the attitude installation bias, op-
timization tools on the special orthogonal group can be used.

Twodifferent approaches are considered for the calibrationpro-
cedures addressed in this paper: the (i) Comparative Calibration,
which considers arbitrary vehicle trajectories and assumes the ex-
istence of a known calibration surface that will be compared with
themeasureddata during the calibration algorithm; and the (ii)Au-
tomatic Calibration, for which no a priori information on the terrain
or trajectory is required and, at least, twomeasured data sets of the
same terrain obtained from different vehicle trajectories are nec-
essary. The former approach was introduced by the authors in [17]
and is included in this paper for comparison purposes, as it rep-
resents the classical approach to this calibration problem. Regard-
ing the automatic calibration, where a known calibration surface
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