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ABSTRACT

A wide variety of kernel-based methods have been developed with great successes in many fields, but
very little research has focused on the reproducing kernel function in Reproducing Kernel Hilbert Space
(RKHS). In this paper, we propose a novel method which we call a local-global mixed kernel with
reproducing property (LGMKRP) to successfully perform a range of classification tasks in the RKHS rather
than the more conventionally used Hilbert space. The LGMKRP proposed in this paper consists of two
major components. First, we find the basic solution of a generalized differential operator by the delta
function, and prove that this basic solution is a new specific reproducing kernel called a local
H-reproducing kernel (LHRK) in RKHS. This reproducing kernel has good local properties, including
odd order vanishing moment, and fast dilation attenuation. Second, in the RKHS, we prove that the LHRK
satisfies the condition of Mercer's theorem, and prove that it is a typical polynomial kernel with global
property, which also possesses the reproducing property. Furthermore, the novel specific mixed kernel
(i.e., LGMKRP) proposed in this paper is based on these two different properties. Experimental results
demonstrate that the LGMKRP possesses the approximation and regularization performance of a

reproducing kernel, and can enhance the generalization ability of kernel methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Kernel methods (KMs) have been successfully applied to a
wide range of classification and recognition tasks [1,2]. The
identification of an effective kernel for a given task is critical to
most kernel based methods in machine learning [3-6]. For
example, selecting the optimal kernel is a big challenge with
regard to applying KMs to pattern recognition in Support Vector
Machines (SVM). Much research has focused on proposing and
evaluating a predefined parametric kernel, e.g., a polynomial or
RBF kernel, but in this paper, we present a mixed kernel
approach. There are many well developed techniques that have
been previously proposed, including diffusion kernels [7], mar-
ginalized kernels 8], graph-based spectral kernels [9] and graph
kernels [10,11]. In recent years, additional kernels have been
proposed, including an improved Fisher kernel for large-scale
image classification [12], a family of kernel descriptors to provide
a unified and principled framework to turn pixel attributes into
compact patch-level features [13], Fourier kernel learning [14],
domain transfer multiple kernel learning [15], and the Quantum
Jensen-Shannon Graph Kernel [10-11].
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Kernels can be divided into two categories, local kernels (e.g.,
Gaussian kernel) and global kernels (e.g., polynomial kernel). A
local kernel can present good interpolation abilities, meaning that
only data points that are close to each other have an influence on
the kernel values [5,16,17]. In comparison, a global kernel pos-
sesses interpolation ability as well as extrapolation ability. This
means that it allows data points that are far away from each other
to have an influence on the kernel values [18-20].

In order to attempt to obtain the best properties from both the
approaches, a potentially more appealing approach is to learn a
composite kernel from a fixed set of base kernels. This general
framework is known as a mixed kernel framework. It has been
shown in [21-23] that the use of this approach can result in both
good interpolation and extrapolation abilities. In recent years, many
frameworks and reviews of the mixed kernel approach have been
presented. For example, an unbiased least squares support vector
regression model with a composite kernel was proposed for
reducing the computational complexity of a kernel machine's
online modeling [24]. The constraints of time and memory will
reduce the learning performance of SVM when it is used to solve a
large number of samples. In order to solve this problem, a novel
algorithm called Granular SVM based on mixed kernel function was
proposed [25]. A challenging problem of pose recognition using
simultaneous color and depth information was solved in [26] with
the use of a local-global multi-kernel approach. Zhu et al. [23]
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proposed a method called mixed kernel canonical correlation
analysis to achieve easy yet accurate implementation of dimension-
ality reduction. Another example is in [27], where a distribution
spectrum was obtained by a continuum fitting method using a
mixed Gaussian and exponential kernel function.

However, the kernel methods listed provide only a very limited
discussion of the reproducing characteristics of the kernel function
and do not fully discuss the case of a typical polynomial kernel with
global property which possesses the reproducing property. There
has been limited research focused on the reproducing character-
istics of mixed kernels in Reproducing Kernel Hilbert Space (RKHS).
The reproducing kernel function possesses good local properties
(which will be discussed in more depth later in this paper), such as
odd order vanishing moment, fast dilation attenuation, symmetry
and regularity, and therefore, their utilization has many potential
benefits. Therefore, in this paper, we propose the creation of a local-
global mixed kernel with reproducing property (LGMKRP), which is
based on the two different properties of the LHRK and global
polynomial reproducing kernel (GPRK).

There are three main contributions of this paper. Firstly, we
find the basic solution of a generalized differential operator, and
prove that this basic solution is a new specific reproducing kernel,
which is called a local H-reproducing kernel (LHRK). Some
important and relevant properties of the LHRK are then discussed.
Secondly, in the RKHS, we prove that the LHRK satisfies the
condition of Mercer's theorem and demonstrate that the data in
the neighborhood of a test point has a significant influence on its
kernel value. Moreover, we also prove that a typical polynomial
kernel with the global property possesses the reproducing prop-
erty, known as polynomial RKHS, which contains a polynomial
reproducing kernel. Based on this, we propose a novel specific
mixture of kernels, which we call a local-global mixed kernel with
reproducing property (LGMKRP), which is based on both of the
different properties (i.e., local and global). This proposed method is
evaluated with a range of extensive experiments. These compare
our approach with a range of typical kernels using a number of
publicly available datasets. The results of these experiments
confirm the effectiveness of our method.

The remainder of this paper is divided as follows. Firstly, we
describe the RKHS and provide some illustrative examples in
Section 2. Section 3 discusses a reproducing kernel in RKHS and
provides some important theorems and research, including the
basic methodology, the properties of the H-reproducing kernel,
the reproducing property of the polynomial kernel, model selec-
tion, and parameter tuning. In Section 4 we present a number of
experimental results and discuss several in-depth application
areas. Finally, the paper is concluded in Section 5.

2. Background
2.1. Reproducing Kernel Hilbert Space

Let F(E) be the linear space comprising of all complex-valued
functions on an abstract set E. Let H be a Hilbert space (possibly
finite-dimensional) equipped with inner product < -, - > . Let

h:E->H (1)

be a Hilbert space H-valued function on E. We consider the linear
mapping L from H into F(E) to be defined by

f@=1ge)(p)= <g hP) >y )

The fundamental problems in the linear mapping in (1) are
firstly the characterization of the function f(p) and secondly the
relationship between g and f(p).

The approach to solve these fundamental problems is to form
the function K(p,q) on E x E defined by

K(p,q)= <2().8(D) > u- 3

R(L) denotes the range of L for H and we introduce the inner
product in R(L) induced from the norm

I[fllray = inf{liglln; f = Lg}, 4
then, from [28] we have Definition 1.

Definition 1. For the function K(p,q) defined by (2), the space
[R(L), < -, - >gw] is a Hilbert space satisfying the properties that

(1) for any fixed q € E, K(p, q) belongs to R(L) as a function in p;
(2) for any f e R(L) and for any q e E,

f@=<f().K(-, @) > re). 6

Further, the function K(p,q) satisfying (1) and (2) is uniquely
determined by R(L). Furthermore, the mapping L is an isometry
that maps from H onto R(L) if and only if {h(p); p € E} is complete in
H.

In Definition 1, the properties (1) and (2) of the function K(p, q)
are defined as the reproducing property of K(p,q) in the Hilbert
space R(L), and the kernel K(p, q) is called a reproducing kernel. A
Hilbert space containing a reproducing kernel is known as a RKHS.

For clarity, we provide two simple and concrete examples of
reproducing kernels in RKHS [28].

Example 1. Let (e1,ep,---,e;) be an orthonormal basis in H
and define

Kx.y)= zn:] ei(x)e;(y). ©)
iz
Then for any y in E,
K(-.y)= i eiyei-), (7)
iz
belongs to H and for any function
P()= anl Aiei( ). ®)
iz
In H, we have
VyeE <o().K(-.¥)>n
=< iﬂiei( ) iéio’)ei( )>H

i=1 i=1

non
Z Z /11-?]0/) < ei,ej >H

i—1j=1

= > keiy) =) ©®)

i=1

By Definition 1, we can therefore obtain K(-,y), the reprodu-
cing kernel of H.

Example 2. Let K(i,j)=oj(delta function or Kronecker symbol,
equal to 1 if i =j, to 0 otherwise).

Then
VjeN, K(-,j)=(0,0,---,0,1,0,---) e H,(1 atthej — th place), (10)
VieN, VX=X)icyeH, <x.K(-.J)>n= Xioj=X;. (11
ieN

So K(-, -) is the reproducing kernel of H.
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