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a b s t r a c t

Most existing multi-target tracking (MTT) algorithms are based on Kalman filters (KFs). However, KFs
exhibit poor estimation performance or even diverge when system models have parameter uncertain-
ties. To overcome this drawback, finite impulse response (FIR) filters have been studied; these are more
robust against model uncertainty than KFs. In this paper, we propose a novel MTT algorithm based on FIR
filtering for Markov jump linear systems (MJLSs). The proposed algorithm is called the multi-target FIR
tracking algorithm (MTFTA). The MTFTA is based on the decision-making process to identify the true-
target's state among candidate states. The true-target decision-making process utilizes the likelihood
function and the Mahalanobis distance. We show that the proposed MTFTA exhibits better robustness
against model parameter uncertainties than the conventional KF-based algorithm.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-target tracking (MTT) estimates the number and states of
targets from noisy measurements. MTT algorithms have been used in
many engineering applications, including radar systems, video sur-
veillance, and intelligent transportation systems [1–5]. There are
various kinds of MTT algorithms, but they can be categorized into
two groups. One is MTT algorithms based on data association (DA)
techniques. The global nearest neighbor (GNN) [6], joint probabilistic
data association (JPDA) [7], and multiple hypothesis tracking (MHT)
[8] belong to this group. The other group is based on the random finite
set (RFS) approach proposed by Mahler [9] for overcoming the high
computational burden of DA techniques. The probability hypothesis
density (PHD) filter [9] is a representative MTT algorithm based on the
RFS. However, the PHD filter requires multiple dimensional integrals
in the propagation of Bayes recursion and has no closed-form
solutions. To obtain a closed-form solution of the PHD filter, the
Gaussian mixture PHD (GM-PHD) filter was proposed by Vo [10].

Recently, Markov jump systems (MJSs) have attracted signifi-
cant attention in various fields due to their modeling capability of
practical systems, such as aircraft, power, and communication
systems [11–18]. In the MTT problem, the Markov jump linear
system (MJLS) [19–21] has been widely used to describe the

changeable motion of maneuvering targets [22]. DA techniques
are combined with the interactive multi-model (IMM) algorithm
to solve MTT problems for MJLS [23,24]. In the framework of the
PHD filter, GM-PHD filters for MJLS have been proposed [25–27].

Most existing MTT algorithms for MJLS are based on Kalman filters
(KFs). However, it is known that KFs exhibit poor estimation perfor-
mance or even diverge when system models have parameter uncer-
tainties [28–30]. This is because KFs have an infinite impulse response
(IIR) structure. State estimators with an IIR structure [30,31] use all
past input/output information to produce state estimates; thus, the
errors caused by differences between the true information and the
given information of system models accumulate over time. To over-
come this drawback of KFs with an IIR structure, state estimators with
a finite impulse response (FIR) structure, referred to as FIR filters
[32–42], were developed. The FIR filters use the recent finite input/
output information of the system to produce state estimates. Thus, FIR
filters can prevent error accumulation and have bounded-input,
bounded-output (BIBO) stability. A state estimator with a FIR structure
was originally developed by Jazwinski [32]. Kwon developed the
optimal FIR filter with batch form [33] and the receding horizon
Kalman FIR (RHKF) filter with recursive form [34]. Ahn developed
several robust FIR filters [35–39], such as the H1 FIR filter [35,36] and
the l1 FIR filter [38], for deterministic systems. Pak [41] developed FIR
filters using variable horizon size and used them in tracking applica-
tions. The FIR filters mentioned above have shown their superior
robustness against modeling errors and incorrect noise information
compared with the KFs.
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The information on a target's motion and noise statistics is
usually uncertain in MTT problems. The MTT algorithms based on
KFs may exhibit poor tracking performance with incorrect model
information. Therefore, in this paper, we propose a novel FIR filter-
based MTT algorithm for MJLS. The proposed algorithm is called
the multi-target FIR tracking algorithm (MTFTA). The MTFTA
follows the RFS approach to avoid the high computational burden
of DA techniques. The RFS approach generates many candidates of
the target's state, called the hypotheses, which are obtained
through state estimation using noisy measurements. Among the
hypotheses, the MTFTA selects the reliable ones. Next, the MTFTA
decides which is the true-target's state among the reliable
hypotheses. This decision-making process is based on the like-
lihood function and the Mahalanobis distance. Through this two-
step decision-making process, the estimated states of the true
targets are obtained. Under the conditions of the uncertain model
parameters and the incorrect noise information, the MTFTA is
compared to the conventional KF-based MTT algorithm, the GM-
PHD filter. We show that the MTFTA has superior robustness
against model parameter uncertainty and incorrect noise informa-
tion compared to the GM-PHD filter.

This paper is organized as follows. In Section 2, we propose the
MTFTA for MJLS. In Section 3, extensive simulation results are
presented to demonstrate the performance of the MTFTA. Finally,
conclusions are presented in Section 4.

2. MTFTA for MJLSs based on true-target decision-making

2.1. FIR filter for MJLSs

In this subsection, we introduce the FIR filter for MJLS [42]. This
will be used for the MTFTA in the next section. Consider the
following MJLS model [42,43]:

xkþ1 ¼ AðrðkÞÞxkþGwk; wk � ð0;Q Þ; ð1Þ

yk ¼ CðrðkÞÞxkþvk; vk � ð0;RÞ; ð2Þ
where xkARn and ykARp are the state and measurement vectors
at time k, respectively; the process and measurement noises, wk

and vk, are zero-mean white Gaussian and mutually uncorrelated;
AðrðkÞÞ, CðrðkÞÞ, and G are constant matrices with appropriate
dimensions (in particular, the matrix AðrðkÞÞ is assumed to be
nonsingular). Here, r(k) is the regime (model) variable in effect
during the sampling period ðk; kþ1�, which is used for the model
transition. In the MJLS, the model transition is determined by the
transitional probability, πij, defined by

πij ¼ PðrðkÞ ¼ jj rðk�1Þ ¼ iÞ; ði; jASÞ; ð3Þ

S¼ f1;2;…; sg; ð4Þ
where PðrðkÞ ¼ jj rðk�1Þ ¼ iÞ is the probability of model transition
from the ith model to the jth model, S is the set of regime
variables, and s is the number of models.

The FIR filter for MJLS models (1) and (2) is represented as
follows [42]:

x̂kj k�19
XN
i ¼ 1

Hi;rðkÞyk� i ð5Þ

¼ ~H rðkÞYk�1; ð6Þ
where ~HrðkÞ is the FIR filter gain, Yk�1 is the augmented measure-
ment vector, and rðkÞ is the set of switching information on the
horizon ½k�N; k�1� defined by, respectively,

~HrðkÞ9 HN;rðkÞ HN�1;rðkÞ ⋯ H1;rðkÞ
� �

; ð7Þ

Yk�19 yTk�N yTk�Nþ1 ⋯ yTk�1

� �T
; ð8Þ

rðkÞ9frðk�NÞ; rðk�Nþ1Þ;⋯; rðk�1Þg: ð9Þ
The FIR filter gain ~H rðkÞ is represented as follows:

~HrðkÞ ¼ ð ~CT
N;rðkÞ ~Ξ

�1
N;rðkÞ

~CN;rðkÞÞ�1 ~C
T
N;rðkÞ ~Ξ

�1
N;rðkÞ; ð10Þ

where

~CN;rðkÞ9

Cðrðk�NÞÞA�1ðrðk�NÞÞ⋯A�1ðrðk�1ÞÞ
Cðrðk�Nþ1ÞÞA�1ðrðk�Nþ1ÞÞ⋯A�1ðrðk�1ÞÞ
⋮
Cðrðk�2ÞÞA�1ðrðk�2ÞÞA�1ðrðk�1ÞÞ
Cðrðk�1ÞÞA�1ðrðk�1ÞÞ

2
66666664

3
77777775
; ð11Þ

~ΞN;rðkÞ9 ~GN;rðkÞQN
~G
T
N;rðkÞ þRN ; ð12Þ

QN9 ½diagðQ Q ⋯ Q
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{N

Þ�; ð13Þ

RN9 ½diagðR R ⋯ R
zfflfflfflfflffl}|fflfflfflfflffl{N

Þ�; ð14Þ

~GN;rðkÞ9�

Λ11 Λ12 ⋯ Λ14 Λ15

0 Λ22 ⋯ Λ24 Λ25

0 0 ⋯ ⋮ ⋮
⋮ ⋮ ⋮ Λ44 Λ45

0 0 ⋯ ⋯ Λ55

2
6666664

3
7777775
; ð15Þ

Λ119Cðrðk�NÞÞA�1ðrðk�NÞÞG;
Λ129Cðrðk�NÞÞA�1ðrðk�NÞÞA�1ðrðk�Nþ1ÞÞG;
Λ149Cðrðk�NÞÞA�1ðrðk�NÞÞ⋯A�1ðrðk�2ÞÞG;
Λ159Cðrðk�NÞÞA�1ðrðk�NÞÞ⋯A�1ðrðk�1ÞÞG;
Λ229Cðrðk�Nþ1ÞÞA�1ðrðk�Nþ1ÞÞG;
Λ249Cðrðk�Nþ1ÞÞA�1ðrðk�Nþ1ÞÞ⋯A�1ðrðk�2ÞÞG;
Λ259Cðrðk�Nþ1ÞÞA�1ðrðk�Nþ1ÞÞ⋯A�1ðrðk�1ÞÞG;
Λ449Cðrðk�2ÞÞA�1ðrðk�2ÞÞG;
Λ459Cðrðk�2ÞÞA�1ðrðk�2ÞÞA�1ðrðk�1ÞÞG;
Λ559Cðrðk�1ÞÞA�1ðrðk�1ÞÞG:

2.2. MTFTA for MJLSs

As explained in the previous section, the FIR filtering requires
the measurement trajectory for the time interval ½k�N; k�1�,
which was represented in an augmented measurement vector
form in (8). In the MTT problem, simultaneous multiple measure-
ments exist; thus, the measurement trajectory becomes compli-
cated. At time k�N, we assume that multiple measurements exist
from yk�N;1 to yk�N;mðk�NÞ, where mðk�NÞ is the number of
measurements at time k�N. Since the number of measurements
is unpredictable (i.e., random), the set of measurements Yk�N ¼
fyk�N;1; yk�N;2;…; yk�N;mðk�NÞg can be considered as a RFS. We then
define the set of Yi for i¼ k�N; k�Nþ1;…; k�1 as follows:

Sy;k ¼ fYk�N ;Yk�Nþ1;…;Yk�1g; ð16Þ
To perform the FIR filtering, it is necessary to establish the

measurement trajectory by combining N measurements. The
measure trajectory is called a path and is given by

Pathj
k ¼ fyji jy

j
i is on jth path; yjiAYi; for i¼ ½k�N; k�1�g: ð17Þ

Fig. 1 represents the paths, which are constructed by combining N
measurements on the time interval ½k�N; k�1�. The maximum
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