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a b s t r a c t

Multi-label Dimensionality reduction via Dependence Maximization (MDDM) has been proposed
recently to cope with high-dimensional multi-label data. MDDM projects the original data onto a
lower-dimensional feature space in which the dependence between the feature and the associated class
labels is maximized. However, the computation of MDDM involves dense matrices eigen-decomposition
that is computationally expensive for the high-dimensional data. In addition, MDDM cannot be
guaranteed to capture the correlation between multiple labels, which are highly beneficial to multi-
label learning. To efficiently solve MDDM, in this paper we propose a novel framework that does not
require any eigen-decomposition of a matrix. Specifically, our algorithm has linear time complexity in
the dimensionality of the data set. Further, we show that MDDM can be reformulated as a least-squares
problem, enabling us to integrate the shared subspace that can effectively uncover multiple label
interactions. Extensive experiments conducted on benchmark data collections verify the effectiveness of
our proposed model.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-label classification has recently gained significant attention
in many applications such as multi-topic document categorization
[1,2], protein function prediction [3,4] and automatic image annotation
[5,6]. Unlike traditional single-label classification where each instance
belongs to only one class, multi-label classification deals with pro-
blems where each instance may associate with more than one class. A
large number of algorithms for multi-label classification have been
developed in the literature. According to [7], existing multi-label
classification methods can be roughly divided into two categories:
algorithm adaption and problem transformation. Algorithm adaption
approaches attempt to extend existing single-label classification algo-
rithms to handle multi-label problems. Typical examples include
neural network [8,9], lazy learning [10–12], Adaboost MR [13,14],
and rank SVM [15] . For the transformation approaches, one usually
transforms the multi-label classification problem into several single-
label classification problems so that existing single-label approaches
can be easily employed. Some prominent examples include binary
relevance method [7], pair-wise method [16,17] and label embedding
method [18–20]. Recently, Madjarov et al. [21] extend this categoriza-
tion of multi-label methods with a third group of methods, namely,

ensemble methods. Algorithms belonging to this group include RAkEL
[22] and ensembles of classifier chains [23].

However, multi-label classification frequently involves high-
dimensional data which makes existing approaches impractical
due to the curse of dimensionality. As a result, a large number of
multi-label dimension reduction approaches have been developed
in the literature. Multi-label informed latent semantic indexing
(MLSI) was proposed in [24] for multi-label dimension reduction.
MLSI employs the label information to guide the learning of the
transformation and has been applied successfully in multi-label text
classification. Classical LDA has been extended by Park and Lee [25]
to handle multi-label data samples. However, it does not take label
correlation into account. Wang et al. [26] proposed a novel multi-
label linear discriminant analysis (MLDA) to take advantage of label
correlation and explore the powerful discrimination ability to cope
with multi-label DR. Zhang and Zhou [27] developed a multi-label
dimensionality reduction via dependence maximization. However,
it involves generalized eigenvalue decomposition which requires
expensive computation cost especially for high-dimensional data.
Sun et al. [28] investigated the relationship between canonical
correlation analysis and least squares and proposed a least squares
canonical correlation analysis for multi-label classification. Unlike
CCA, partial least squares (PLS) [29] maximize the covariance of the
two sets of variables in the transformed space. An equivalent
relationship between CCA and PLS has been established in [30].
However, the above mentioned algorithms cannot capture high
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order correlation information among different labels. As a result, a
least squares formulation of hypergraph spectral learning has been
proposed in [31] to capture the correlation information contained in
different labels. To further incorporate the data and label correla-
tion, a hypergraph canonical correlation analysis for multi-label
classification has been presented in [32] recently. Li et al. [33]
present a novel multi-label dimensionality reduction using the
variable pairwise constraints. A more comprehensive review of
multi-label dimensionality reduction as well as multi-label learning
algorithms can be found in [34,35].

As indicated in [36,37], it is reasonable to assume that there is a
certain common information shared among data samples and
uncover this shared structure may improve learning performance.
It has been claimed in [38] that there should be a shared subspace
across multiple tasks and uncovering this shared subspace can
improve classification performance. Yang et al. [39] have assumed
that there is shared subspace among different labels and proposed
a semi-supervised learning framework for multi-label image
annotation. Based on the assumption that different related tasks
may share common structures, Yang et al. [40] proposed a novel
feature selection approach for multimedia analysis. Recently, Shu
and Lu [41] proposed a trace norm regularized discriminant
analysis for dimension reduction and simultaneously uncover the
shared information among data samples. However, their algorithm
is essentially devised for single-label problemwhich means it does
not deal with multi-label data directly.

Motivated by the consideration that there should exist a
common subspace to be shared among multiple labels, we attempt
to extract a shared subspace for multi-label dimensionality reduc-
tion. Our work builds on the recent work of multi-label dimension-
ality reduction via dependence maximization (MDDM) [27]. We
propose an efficient approach for computing the optimal solution of
MDDM which requires much smaller computation time. Further
analysis shows that MDDM can be reformulated as a least squares
problemwhich enables us to capture the shared information among
different labels in the least squares framework. In summary, the key
contributions of this article are highlighted as follows:

� We propose an efficient algorithm for computing the optimal
solution of MDDM [27] which avoids the direct eigendecom-
position on the large scale matrix. For high-dimensional data
set, the time complexity of the new algorithm is Oðmn2Þ which
is smaller than the original formulation Oðm2dÞ, where m is the
number of features, n is the number of samples and d is the
dimensionality of the lower-dimensional subspace.

� We further show that MDDM can be reformulated as least squares
problems. Based on this equivalent relationship, we develop a
shared subspace MDDM for multi-label dimensionality reduction.

� We have conducted extensive experiments on several bench-
mark datasets to demonstrate the effectiveness of the proposed
formulation.

The rest of the article is organized as follows. Section 2 reviews
MDDM. Section 3 presents the new technique to compute the
optimal solution of MDDM. The shared subspace MDDM is pre-
sented in Section 4. We report experimental results in Section 5.
Followed with conclusion in Section 6.

2. A brief review of MDDM

In this section, we give a brief review of MDDM. We focus on
the linear version of MDDM. Some important notations have been
first described in Table 1.

Suppose we are given a training data set X ¼ ½x1; x2;…; xn�ARm�n.
Each xi is associated with c labels which can be represented as a

c-dimensional binary vector yi, where yiðjÞ ¼ 1 if xi is associated with
jth label, and yiðjÞ ¼ 0 otherwise. Let Y ¼ ½y1; y2;…; yn�ARc�n be the
indicator matrix.

Since there should exist some relationships between the
feature space and the label space associated with the same object,
MDDM attempts to find a lower-dimensional feature space where
the dependence between the input and the output is maximized.
Denote the projection matrix as PARm�d. The original data
instance xi is first projected into a new space by ϕðxiÞ ¼ PTxi and
the reduced kernel function is given by

kðxi; xjÞ ¼ 〈ϕðxiÞ;ϕðxjÞ〉¼ 〈PTxi; P
Txi〉

where 〈a;b〉 denotes the inner product defined as 〈a; b〉¼ aTb. For
the label space, the corresponding kernel function can be simply
defined as ℓðyi; yjÞ ¼ 〈yi; yj〉.

Given (X,Y) with a joint distribution PXY, the feature kernel
matrix KðKij ¼ kðxi; xjÞÞ and the label kernel matrix LðLij ¼ ℓðxi; xjÞÞ,
the empirical Hilbert–Schmidt independence criterion (HSIC) is
estimated by the trace of kernel matrices product as [42]

HSICðX;Y ; PXY Þ ¼ ðn�1Þ�2trðHKHLÞ
where H is the centering matrix defined as H ¼ I�ð1=nÞeeT . HSIC is
proposed for measuring the statistical dependence of random
variables and has been applied successfully for data clustering
[43] and supervised feature selection [44].

In order to achieve the maximum dependence between the
input and output space, MDDM aims to maximize the following
expression to compute the optimal P:

HSICðX;Y ; PXY Þ ¼ ðn�1Þ�2trðHKHLÞ
Notice that K ¼ 〈ϕðXÞ;ϕðXÞ〉¼ XTPPTX, we obtain

Pn ¼ arg maxPHSICðX;Y ; PXY Þ ¼ trðHXTPPTXHLÞ
where we drop the constant ðn�1Þ�2. To avoid trivial solution, an
additional constraint for P is introduced which leads to the
following expression:

maxP traceðHXTPPTXHLÞ
s:t: PT μXXT þð1�μÞI

� �
P ¼ I ð1Þ

where μ is a parameter to control the importance between two
constraints. When μ¼ 0, the projection vectors are orthonormal
which is called orthogonal projection [27]. For μ¼ 1, the projec-
tion vectors are uncorrelated on the training data and the method
is called uncorrelated subspace dimensionality reduction [27].

It is easy to verify that the optimal solutions of (1) are
characterized by the following generalized eigenvalue problem:

S2p¼ λS1p ð2Þ
where S1 ¼ μXXT þð1�μÞI and S2 ¼ XHLHXT . If S1 is nonsingular, the
optimal P is given by the eigenvectors of S�1

1 S2 corresponding to the d
largest eigenvalues, which requires Oðdm2Þ computational cost. When

Table 1
Notations.

Notations Descriptions

n the number of training samples
m the dimensionality of data point
c the number of labels
d the dimensionality of lower-dimensional subspace
xi the i-th data point
X the data matrix
Y the indicator matrix
H the centering matrix
P the transformation matrix
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