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ABSTRACT

Multi-label Dimensionality reduction via Dependence Maximization (MDDM) has been proposed
recently to cope with high-dimensional multi-label data. MDDM projects the original data onto a
lower-dimensional feature space in which the dependence between the feature and the associated class
labels is maximized. However, the computation of MDDM involves dense matrices eigen-decomposition
that is computationally expensive for the high-dimensional data. In addition, MDDM cannot be
guaranteed to capture the correlation between multiple labels, which are highly beneficial to multi-
label learning. To efficiently solve MDDV, in this paper we propose a novel framework that does not
require any eigen-decomposition of a matrix. Specifically, our algorithm has linear time complexity in
the dimensionality of the data set. Further, we show that MDDM can be reformulated as a least-squares
problem, enabling us to integrate the shared subspace that can effectively uncover multiple label
interactions. Extensive experiments conducted on benchmark data collections verify the effectiveness of

our proposed model.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-label classification has recently gained significant attention
in many applications such as multi-topic document categorization
[1,2], protein function prediction [3,4] and automatic image annotation
[5,6]. Unlike traditional single-label classification where each instance
belongs to only one class, multi-label classification deals with pro-
blems where each instance may associate with more than one class. A
large number of algorithms for multi-label classification have been
developed in the literature. According to [7], existing multi-label
classification methods can be roughly divided into two categories:
algorithm adaption and problem transformation. Algorithm adaption
approaches attempt to extend existing single-label classification algo-
rithms to handle multi-label problems. Typical examples include
neural network [8,9], lazy learning [10-12], Adaboost MR [13,14],
and rank SVM [15] . For the transformation approaches, one usually
transforms the multi-label classification problem into several single-
label classification problems so that existing single-label approaches
can be easily employed. Some prominent examples include binary
relevance method [7], pair-wise method [16,17] and label embedding
method [18-20]. Recently, Madjarov et al. [21] extend this categoriza-
tion of multi-label methods with a third group of methods, namely,
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ensemble methods. Algorithms belonging to this group include RAKEL
[22] and ensembles of classifier chains [23].

However, multi-label classification frequently involves high-
dimensional data which makes existing approaches impractical
due to the curse of dimensionality. As a result, a large number of
multi-label dimension reduction approaches have been developed
in the literature. Multi-label informed latent semantic indexing
(MLSI) was proposed in [24] for multi-label dimension reduction.
MLSI employs the label information to guide the learning of the
transformation and has been applied successfully in multi-label text
classification. Classical LDA has been extended by Park and Lee [25]
to handle multi-label data samples. However, it does not take label
correlation into account. Wang et al. [26] proposed a novel multi-
label linear discriminant analysis (MLDA) to take advantage of label
correlation and explore the powerful discrimination ability to cope
with multi-label DR. Zhang and Zhou [27] developed a multi-label
dimensionality reduction via dependence maximization. However,
it involves generalized eigenvalue decomposition which requires
expensive computation cost especially for high-dimensional data.
Sun et al. [28] investigated the relationship between canonical
correlation analysis and least squares and proposed a least squares
canonical correlation analysis for multi-label classification. Unlike
CCA, partial least squares (PLS) [29] maximize the covariance of the
two sets of variables in the transformed space. An equivalent
relationship between CCA and PLS has been established in [30].
However, the above mentioned algorithms cannot capture high
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order correlation information among different labels. As a result, a
least squares formulation of hypergraph spectral learning has been
proposed in [31] to capture the correlation information contained in
different labels. To further incorporate the data and label correla-
tion, a hypergraph canonical correlation analysis for multi-label
classification has been presented in [32] recently. Li et al. [33]
present a novel multi-label dimensionality reduction using the
variable pairwise constraints. A more comprehensive review of
multi-label dimensionality reduction as well as multi-label learning
algorithms can be found in [34,35].

As indicated in [36,37], it is reasonable to assume that there is a
certain common information shared among data samples and
uncover this shared structure may improve learning performance.
It has been claimed in [38] that there should be a shared subspace
across multiple tasks and uncovering this shared subspace can
improve classification performance. Yang et al. [39] have assumed
that there is shared subspace among different labels and proposed
a semi-supervised learning framework for multi-label image
annotation. Based on the assumption that different related tasks
may share common structures, Yang et al. [40] proposed a novel
feature selection approach for multimedia analysis. Recently, Shu
and Lu [41] proposed a trace norm regularized discriminant
analysis for dimension reduction and simultaneously uncover the
shared information among data samples. However, their algorithm
is essentially devised for single-label problem which means it does
not deal with multi-label data directly.

Motivated by the consideration that there should exist a
common subspace to be shared among multiple labels, we attempt
to extract a shared subspace for multi-label dimensionality reduc-
tion. Our work builds on the recent work of multi-label dimension-
ality reduction via dependence maximization (MDDM) [27]. We
propose an efficient approach for computing the optimal solution of
MDDM which requires much smaller computation time. Further
analysis shows that MDDM can be reformulated as a least squares
problem which enables us to capture the shared information among
different labels in the least squares framework. In summary, the key
contributions of this article are highlighted as follows:

® We propose an efficient algorithm for computing the optimal
solution of MDDM [27] which avoids the direct eigendecom-
position on the large scale matrix. For high-dimensional data
set, the time complexity of the new algorithm is O(mn?) which
is smaller than the original formulation O(m?d), where m is the
number of features, n is the number of samples and d is the
dimensionality of the lower-dimensional subspace.

® We further show that MDDM can be reformulated as least squares
problems. Based on this equivalent relationship, we develop a
shared subspace MDDM for multi-label dimensionality reduction.

® We have conducted extensive experiments on several bench-
mark datasets to demonstrate the effectiveness of the proposed
formulation.

The rest of the article is organized as follows. Section 2 reviews
MDDM. Section 3 presents the new technique to compute the
optimal solution of MDDM. The shared subspace MDDM is pre-
sented in Section 4. We report experimental results in Section 5.
Followed with conclusion in Section 6.

2. A brief review of MDDM

In this section, we give a brief review of MDDM. We focus on
the linear version of MDDM. Some important notations have been
first described in Table 1.

Suppose we are given a training data set X =[x1,X5, ...,Xp] € R™*".
Each x; is associated with ¢ labels which can be represented as a

Table 1
Notations.
Notations Descriptions
n the number of training samples
m the dimensionality of data point
c the number of labels
d the dimensionality of lower-dimensional subspace
Xi the i-th data point
X the data matrix
Y the indicator matrix
H the centering matrix
P the transformation matrix

c-dimensional binary vector y;, where y;(j) = 1 if x; is associated with
jth label, and y;(j) = 0 otherwise. Let Y =[y;,y5, ...,¥,] € R™" be the
indicator matrix.

Since there should exist some relationships between the
feature space and the label space associated with the same object,
MDDM attempts to find a lower-dimensional feature space where
the dependence between the input and the output is maximized.
Denote the projection matrix as PeR™ . The original data
instance x; is first projected into a new space by ¢(x;) = P'x; and
the reduced kernel function is given by

k(xi, X)) = (x:), P(x})) = (P"x;, PTx;)

where (a, b) denotes the inner product defined as (a, by =a’b. For
the label space, the corresponding kernel function can be simply
defined as 2(y;, ) = V1. ¥j)-

Given (X)Y) with a joint distribution Pyy, the feature kernel
matrix K(Kj = k(x;,x;)) and the label kernel matrix L(L; = £(x;, X)),
the empirical Hilbert-Schmidt independence criterion (HSIC) is
estimated by the trace of kernel matrices product as [42]

HSIC(X, Y, Pxy) = (n— 1)~ 2tr(HKHL)

where H is the centering matrix defined as H =1—(1/n)ee’. HSIC is
proposed for measuring the statistical dependence of random
variables and has been applied successfully for data clustering
[43] and supervised feature selection [44].

In order to achieve the maximum dependence between the
input and output space, MDDM aims to maximize the following
expression to compute the optimal P:

HSIC(X, Y, Pxy) = (n— 1)~ 2tr(HKHL)
Notice that K = (¢(X), (X)) = X" PP'X, we obtain
P* = arg maxpHSIC(X, Y, Pxy) = tr(HXT PPTXHL)

where we drop the constant (n—1) 2. To avoid trivial solution, an
additional constraint for P is introduced which leads to the
following expression:

maxp trace(HX" PPTXHL)
s.t. PT</4XXT+(1—;4)I)P=I 1)

where u is a parameter to control the importance between two
constraints. When p =0, the projection vectors are orthonormal
which is called orthogonal projection [27]. For u =1, the projec-
tion vectors are uncorrelated on the training data and the method
is called uncorrelated subspace dimensionality reduction [27].

It is easy to verify that the optimal solutions of (1) are
characterized by the following generalized eigenvalue problem:

Sop=AS1p (2)

where S; = ,uXXT+(1 —wland S, = XHLHXT. If S; is nonsingular, the
optimal P is given by the eigenvectors of S; 1S, corresponding to the d
largest eigenvalues, which requires O(dm?) computational cost. When
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