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a b s t r a c t

This paper presents a prediction algorithm for features detection in Ground Penetrating Radar (GPR)
based surveys. Based on signal processing and soft-computing techniques, the coupled use of principal-
component analysis and neural networks enable a definition of an efficient method for analyzing GPR
electromagnetic data. To guarantee a low error rate, a study of the algorithm main numerical parameters
was performed by means of electromagnetic synthetic-data models. Results for detecting features of
geological layers demonstrate not only the method predictions accuracy but also the simple interpreta-
tion of its output through scenarios reconstructed images.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, the advent of commercial purposes ground-
penetrating radar (GPR) has led to multidisciplinary revolution in the
field of buried-object detection, with broad application in areas such
as archaeology (e.g., planning of surveys) [1], geology (e.g., aquifer
detection) [2], andmilitary industry (e.g., non-metallic mine detection)
[3]. One of the main challenges in GPR systems, beyond the mere
detection of buried objects, is to gather information on the objects
composition or the environment surrounding them.

Although the electronic technology necessary for implement-
ing these systems is now mature with constant developments
[4,5], limitations persist in the detection and interpretation of the
results provided. In recent years, two main lines have emerged to
solve this problem. On the one hand, some systems apply tomo-
graphic techniques [6] as well as approaches using integral
equations [7], but these have had only partial success due mainly
to the field data complexity, which contains high levels of noise
caused by non-homogeneities of the host media. On the other
hand, techniques based on Neural Networks (NN) with different
topologies [8–12] have been proposed to solve canonical
electromagnetic-inversion problems, – e.g., a spheroid embedded
in a host medium [13], and further improvements have been
introduced in relation to more realistic geometrical forms related

to civil-engineering applications [14], even including the consid-
eration of a non-homogenous host medium [15].

A common point in all these NN is the implementation, as a
step prior to the training phase NN, of a computational model of
GPR scenarios. In this way, the scattered field in a randomly
generated scenario can be calculated by numerical methods,
usually finite differences in the time-domain (FDTD) [16,17] or,
for cases where numerical instabilities arise, the alternating-
direction implicit FDTD (ADI-FDTD) method [18,19]. One of the
main shortcomings of applying NNs as a prediction system in GPR
problems is the curse of dimensionality, which makes the training
slow and the system prediction capacity poor [20].

Therefore, a key point is to reduce the high dimensionality of
the scattered field data, enabling a reduced number of inputs for
which the NN will be trained, making the process faster and more
reliable. At this point, the application of signal-processing techni-
ques such as Principal-Component Analysis (PCA) can be intro-
duced as part of the algorithm. The usefulness of PCA as a
compression technique with minimum loss of information in
time-domain GPR signals has been shown in [15]. In this previous
work, the objective is to estimate the depth and radius of buried
tubes in a non-homogenous concrete structure.

In this context, the present paper seeks to apply techniques
based on PCA and NNs to build prediction systems for geological
features in GPR-based geological surveys. Furthermore, this pro-
cedure main challenge is not only to achieve a high-rate of success
in the predictions but also to build on previous works in this
research line by producing B-scan graphic results. In this sense, the
proposed algorithm outperforms previous NNs predictors, which
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provide one-dimensional numerical outputs, enabling the inter-
pretation of the solutions by users not specialized in the GPR data
processing.

The paper is structured as follows. First, a general overview of
the background theory is provided, briefly describing the PCA
algorithm, the NNs and the synthetic data creation with FDTD.
Nextly, the scheme of the prediction system is presented, paying
special attention to the differences in the implementation for A-
and B-scan surveys. Then, another section shows the influence of
some numerical parameters in the performance of the prediction
system and, finally, illustrative examples related to the detection
and prediction of geological layers are provided.

2. Background theory

Fig. 1 shows the flowchart synthesizing the prediction system. The
prediction algorithm can be described as a modular system which
combines three different resources in the process: (1) numerical
electromagnetic simulation codes, (2) signal-processing compression
techniques, and (3) neural-networks theory. Further improvements
and incoming advances in any of these theories could be accommo-
dated separately at each stage of the process.

The first step in developing a NN-based prediction algorithm is
to gather representative situations data in which the neural
network will work. Successful accomplishment of the NN training
and configuration phases will be directly related to the diversity,
quantity, and quality of the data provided. For GPR systems, the
use of experimental data is hardly affordable because (1) it is time
consuming and labor intensive, and (2) it is scarcely free of
undesired objects and other experimental sources of errors. For
these reasons, the use of incoming data from electromagnetic
simulations is considered.

The FDTD numerical approach for the solutions of Maxwell's
equations has been broadly employed for GPR simulations [17]. These
provide higher accuracy than ray-tracing methods [21] at a cost of
increasing the computational burden. Moreover, realistic GPR scenar-
ios can be solved due to the ability to deal with non-homogeneous
and dispersive materials. However, in some cases, numerical instabil-
ities can arise, invalidating the computed results. In such a case, an
improved numerical version of the FDTD, called ADI-FDTD, which is
based on an implicit finite-difference formulation of the Maxwell

time-domain equations, can generate accurate results. Therefore,
proper modeling of the GPR equipment and different possible
scenarios (e.g., electromagnetic sources, feeding pulse, constitutive
materials parameters, geometries of non-homogeneous soils) can be
efficiently introduced and solved with the aid of scripts. The process
automation is required since the training phase typically needs to run
hundreds of cases until the NN can be determined.

Signal-processing compression techniques have constituted an
active field of research in the last few decades, mainly for applications
related to audio and image processing [22]. Designed initially for
communication systems, they are aimed at handling a large amount of
information with the least data possible. In this sense, the problem
considered here is analogous. The huge amount of data obtained from
GPR electromagnetic simulations makes their direct use inefficient for
the NN configuration, mainly due to the high complexity of the
training algorithms, which require the handling of incoming data from
hundreds of simulations in order to determine the variables and NN
weights. Even in scenarios where a sufficiently high number of
simulations can be calculated, it is possible that advanced training
algorithms does not converge for high-dimensional NNs, primarily due
to the difficulty of providing a non-sparse set of training data [23,24].

For this reason, it becomes necessary to process the synthetic
data and remove the redundant information. This redundancy of
data is a typical feature in the GPR systems, where exhaustive
measurements are made over the same scenario and minor
differences between adjacent traces appear. To exploit the strong
correlation in the data, Principal-Components Analysis (PCA) can
be applied [25]. PCA identifies similar patterns in data, and
reorganizes the data in such a way that the similarities and
differences are highlighted. Mathematically, this is achieved by
an orthogonalization of a matrix constructed by adding rows with
traces of input data, so that these rows are not correlated with
each other. Another main feature of PCA is that once these
patterns in the data are found (e.g., the orthogonal basis is
determined), the data can also be compressed without significant
loss of information by simply removing some of the basis vectors.

In the present paper, the compression ability of PCA is used to
extract the most relevant information from the data set employed
in the NN training phase. Naming the principal components of a
given trace as its components in the new orthogonal basis derived
from the initial matrix data, composed of a large amount of
examples, the NN input is precisely these principal components.
As a reduction in the basis dimension can be performed with a low
impact on the original trace, the number of principal components
can be reduced leading thus to low-dimensional NNs. The next
section will show that the decomposition of different GPR signals
using the PCA is a key factor of the NN ability to reconstruct the
original geological scenarios.

Finally, some considerations concerning the NNs are necessary
to finish the description of the theories on which the proposed
system is founded. The initial development of the theoretical basis
of NN systems [26–28] has in recent years been followed by a
mature period of real-world applications [29–31]. A major decision
in any problem to be solved is the choice of the network topology,
because this topology has a significant impact on the system
performance, and the same problem can often be successfully
solved with different topologies. Among a considerable number of
network topologies [32,33], the work described here has used a
particular topology called Parallel-Layer Perceptron (PLP) [24,10].
Regarding the inversion problem, this topology has some advan-
tages over other classical networks, such as the multilayer percep-
tron (MLP) [33] and the adaptive-network-based fuzzy-inference
system (ANFIS) [34].

In addition, PLP offers better performance than MLP while main-
taining the ability of ANFIS to handle complex problems. The training
algorithm for PLP used in the present paper is a hybrid method based

Fig. 1. Flowchart of the prediction system. Numbers mean for external resources
applied at each step (see text for details).
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