
Hopf bifurcation and spatio-temporal patterns in a hierarchical
network with delays and Z2 � Zn symmetry

Haijun Hu a, Yanxiang Tan a,b, Chuangxia Huang a,c,n

a School of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha, Hunan 410114, PR China
b College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, PR China
c Academy of Mathematics and Systems Science, Chinese Academy of Science, Beijing 10090, China

a r t i c l e i n f o

Article history:
Received 13 December 2014
Received in revised form
26 March 2015
Accepted 20 May 2015
Communicated by Yang Tang
Available online 30 May 2015

Keywords:
Hierarchical network
Hopf bifurcation
Normal form
Symmetry
Time delay

a b s t r a c t

A hierarchical network composed of two interacting rings each of which consists of n identical cells with
an unidirectional coupling is the topic of this paper. We present a detailed discussion about the linear
stability of the equilibrium by analyzing the associated characteristic equation. The local Hopf bifurcation
and spatio-temporal patterns of bifurcating periodic oscillations are also given by employing the
symmetric Hopf bifurcation theory for delay differential equations. In particular, by using the normal
form theory and the center manifold theorem, we derive the formula determining the direction of the
Hopf bifurcation and the stability of the bifurcated periodic orbits. An example with numerical
simulations is presented to illustrate our theoretical results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

There has been a flurry of research activity on neural networks
since Hopfield [1] constructed a simplified neural network model.
In this model, each neuron is represented by a linear circuit
consisting of a resistor and a capacitor and is connected to the
other neurons via sigmoidal activation functions. This model can
be regarded as an information processing device that is inspired by
the way biological nervous systems, such as the brain, process
information simultaneously. However, the information transmis-
sion between neurons is not instantaneous and so it is more
reasonable and realistic for the model to incorporate the factor of
time delays (see [2]). A variety of research carried on neural
network models with delays has shown that delays can lead to
interesting dynamics in various ways. For more details, we refer to
[3–12], and references therein. In addition, due to the complexity
of dynamics of neural networks, some recent works (e.g., [13–18])
have focused on networks with the same time delay, the small
scale or simple architectures.

Ring networks have been found in a variety of neural architec-
tures such as cerebellum [19], and even in the fields of chemistry

and electrical engineering. In fact, ring networks are of a limited
biological relevance, and may be regarded as building blocks for
networks with more realistic connection topologies. Among many
models of neural network, ring networks can lead to many inter-
esting patterns of oscillation. Thus, they can be studied to gain some
insight into the mechanisms underlying the behavior of recurrent
network [2,20]. In recent years, a ring structure with nearest-
neighbor (unidirectional or bidirectional) coupling between the
elements has received a great deal of attention; a significant body
of research has been carried out (see [15–17,21–25] and references
therein). Some of these studies have concerned lower dimensional
systems. For example, Guo [25] studied a tri-neuron ring model with
unidirectional coupling

_uiðtÞ ¼ �μuiðtÞþ f ðuiþ1ðt�τÞÞ; iðmod 3Þ; ð1:1Þ
where _u ¼ du=dt, ui(t) represents the activation of the ith neuron at
time t, μ40 represents the decay rate of the activation, f represents
the activation function, τZ0 is the signal transmission delay.

The vast majority of previous works have just considered the
individual network but not investigated the interactions between
multiple networks. In fact, numerous natural and artificial systems
possess a hierarchic structure or functioning and can be naturally
described by coupled sub-network. Coupled networks of nonlinear
dynamical systems can exhibit rich dynamics, such as synchroni-
zation, symmetric bifurcation, chaos (see [26–31]). The rich
dynamics arising from the interaction of simple networks can
help scientists analyze the collective behavior of complex systems.
For example, the brain may be conceived as a dynamic network of
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coupled neurons. To describe the complicated interaction between
billions of neurons in a large neural network, the neurons are
generally lumped into highly connected sub-networks [32]. These
sub-network interactions (pathological synchronization) may
bring about serious problems such as Parkinsons disease, essential
tremor, and epilepsy [33,34].

Inspired by the above works, we consider in this paper a two-
level hierarchical system, which consists of two coupled modules
of interacting nonlinear neuron oscillators with time delays and
Zn�symmetry. This network is depicted schematically in Fig. 1,
and given by the following system of delay differential equations
(DDEs):

_x0jðtÞ ¼ �x0jðtÞþ f ðx0jðt�τÞÞþgðx0;jþ1ðt�τÞÞþhðx1jðt�τÞÞ;
_x1jðtÞ ¼ �x1jðtÞþ f ðx1jðt�τÞÞþgðx1;jþ1ðt�τÞÞþhðx0jðt�τÞÞ;

(
ð1:2Þ

where j¼ 0;1;…;n�1ðmod nÞ, the activation functions f ; g;hAC1

ðR;RÞ satisfying f ð0Þ ¼ gð0Þ ¼ hð0Þ ¼ 0. In this model, the individual
elements are represented by a scalar equation, composed of a
linear decay term and a nonlinear, time delayed self-feedback.

In model (1.2), each sub-network can be considered as an
identical ring module in which n elements are coupled in such a
way that the invariance under cyclic permutations is attained.
Noticing that the decay rate μ in system (1.1) can be normalized
through the time transformation, system (1.2) is a natural exten-
sion of system (1.1). System (1.2) is also a particularly simple
example of a symmetric system exhibiting a hierarchical structure
with two levels: a “macro” level concerning the interactions
between the groups and a “micro” level concerning the interac-
tions within the groups. The overall symmetry of system (1.2) can
then be represented as a product of permutation groups, Z2 � Zn,
which allows us to study the dynamics analytically. Furthermore,
the symmetry implies generally a certain spatial invariant of the
dynamical systems. For example, the spatio-temporal patterns of
bifurcating periodic solutions can be characterized precisely
according to symmetric Hopf bifurcation theory, which is due to
the pioneering work of Wu [35] (based on the topological methods
and theorem by Golubitsky [36]).

The main difference from the models considered in [30,31] is
that model (1.2) is a large-scale network, each sub-network of
which is composed of arbitrary n neurons with an unidirectional
ring structure. This adds some complications to the analysis and
computation but, as we shall show, also allows for more interest-
ing dynamics of the system. In this paper, we are interested in

studying how the time delay can affect the stability of two-level
hierarchical system (1.2). We are concerned about the occurrence
of bifurcating periodic solutions when the delay τ passes through a
critical value, and spatio-temporal patterns of the bifurcating
periodic oscillations depending on the Z2 � Zn�symmetry. In
addition, the stability of these periodic solutions is clearly impor-
tant in applications, but also poses significant computational
challenges. We also manage to obtain some formula about the
direction of the Hopf bifurcation and the stability of the bifurcated
periodic solution by using normal form method and center
manifold introduced by Faria and Magalháes [37,38].

The outline of this paper is as follows. In Section 2, we discuss
the linear stability of the equilibrium by analyzing the distribution
of roots of the associated characteristic equation. The local Hopf
bifurcation and spatio-temporal patterns of it are addressed in
Section 3. Section 4 is devoted to the direction of Hopf bifurcation
and the stability of the bifurcating periodic solutions. An example
and numerical simulations are presented to illustrate the results in
Section 5. Finally, a brief discussion is drawn in Section 6.

2. Linear stability analysis

It is obvious that system (1.2) admits the trivial solution x̂ ¼ 0.
The linearization of (1.2) at the origin is given by

_x0jðtÞ ¼ �x0jðtÞþax0jðt�τÞþbx0;jþ1ðt�τÞþcx1jðt�τÞ;
_x1jðtÞ ¼ �x1jðtÞþax1jðt�τÞþbx1;jþ1ðt�τÞþcx0jðt�τÞ;

(
ð2:1Þ

where j mod n, and a¼ f 0ð0Þ, b¼ g0ð0Þ, c¼ h0ð0Þ.
Letting

xðtÞ ¼ ðx00ðtÞ; x01ðtÞ;…; x0;n�1ðtÞ; x10ðtÞ; x11ðtÞ;…; x1;n�1ðtÞÞTAR2n

and xtðθÞ ¼ xðtþθÞACð½�τ;0�;R2nÞ, system (2.1) can be rewritten
as

_xðtÞ ¼ Lτxt ; ð2:2Þ
where the linear operator Lτ : Cð½�τ;0�;R2nÞ-R2n is given by

Lτφ¼ �φð0ÞþMφð�τÞ; ð2:3Þ
M¼ circðM1;M2Þ is a circle block matrix, M1 ¼ circða; b;0;…;0Þ is a
circulant matrix of order n, and M2 ¼ c Idn, Idn denotes the identity
matrix of order n. It is well-known that for each fixed delay τ, the
linear system (2.1) generates a strongly continuous semigroup of
linear operators with the infinitesimal generator AðτÞ given by

AðτÞφ¼ _φ; φADomðAðτÞÞ;
DomðAðτÞÞ ¼ fφACð½�τ;0�;R2nÞ; _φACð½�τ;0�;R2nÞ; _φð0Þ ¼ Lτφg:

ð2:4Þ
We recall that AðτÞ has only the point spectrum, and the spectrum
σðAðτÞÞ consists of eigenvalues which are solutions of the char-
acteristic equation

det Δðτ; λÞ ¼ 0; ð2:5Þ
where the characteristic matrix is given by

Δðτ; λÞ ¼ λ Id2n�Lτðeλ�Id2nÞ
¼ ðλþ1ÞId2n�Me�λτ ; λAC:

Let χ ¼ ei2π=n, vq ¼ ð1; χq;…; χðn�1ÞqÞT, and vpq ¼ ðvq; ð�1ÞpvqÞT. Not-
ing that Mvpq ¼ ½aþð�1Þpcþbχq�vpq, we have

Δðτ; λÞvpq ¼ λþ1�½aþð�1Þpcþbχq�e�λτ
n o

vpq: ð2:6Þ

Hence, we obtain

detΔðτ; λÞ ¼ ∏
n�1

q ¼ 0
∏
1

p ¼ 0
Δpq; ð2:7Þ

Fig. 1. Architecture of model (1.2).

H. Hu et al. / Neurocomputing 168 (2015) 475–487476



Download English Version:

https://daneshyari.com/en/article/411762

Download Persian Version:

https://daneshyari.com/article/411762

Daneshyari.com

https://daneshyari.com/en/article/411762
https://daneshyari.com/article/411762
https://daneshyari.com

