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a b s t r a c t

Some comparison principles for fractional-order linear systems with multiple time delays are estab-
lished, after Mittag–Leffler functions are showed to be positive. Then by the stability theory of fractional
linear delayed systems, the comparison systemwith multiple time delays is showed to be asymptotically
stable under some conditions. Based on the comparison results, the asymptotical stability of the original
systems follows from that of the comparison system. Then the obtained results are applied to investigate
the asymptotical stability of nonlinear fractional-order cellular neural networks with multiple time
delays. In terms of the inequality satisfied by the fractional derivative of Lyapunov function, some criteria
ensuring asymptotical stability of fractional neural models are derived. Numerical simulations are
presented to demonstrate the validity and feasibility of the proposed stability criteria.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

As we know, neural networks have been one of the most extensi-
vely investigated topics in many research and application areas in
solving various classes of engineering problems, such as image and
signal processing, associative memory, pattern recognition, parallel
computation, control and optimization and so on [1–7]. Equilibrium
and stability properties of neural networks are of great importance in
the design of dynamical neural networks. Frequently, time delays will
be encountered in biological and artificial neural networks [8–12],
and their existence will often cause complex behaviors, such as
oscillation and instability [13,14]. So delayed models are more
general in practical applications of neural networks. Now fractional
calculus has already been introduced into neural models by many
researchers.

Fractional calculus is believed to have stemmed from a question
raised in the year 1695. It is the generalization of integer-order
calculus to arbitrary order one. It is commonly called fractional-
order calculus, including fractional-order derivatives and fractional-
order integrals. Compared with the classical integer-order models,
fractional-order models provide an excellent instrument for the
description of memory and hereditary properties of various materials
and processes. It would be far better if many practical problems are
described by fractional-order dynamical systems rather than integer-

order ones. So many systems could be more elegantly described by
fractional calculus, such as viscoelastic systems, dielectric polarization,
electromagnetic waves, heat conduction, robotics, biological systems,
finance and so on, see [15–21].

Nowadays, some stability results and chaos about fractional
neural models have been derived. For instance, in [22], stability,
multi-stability bifurcations and chaos of fractional-order neural
networks of Hopfield type were investigated. In [23], the dynamics
of noninteger order cellular neural networks were introduced. In
[24], stability of fractional-order autonomous neural networks was
described by handling a new fractional-order differential inequal-
ity. In [25] Huang et al. channeled their energy into chaos and
hyperchaos in fractional-order cellular neural networks, and so on.

And there are also many researchers paying their attentions to
fractional-order neural networks with delay. Such as in [26], a suffi-
cient condition was established for the uniform stability of fractional-
order neural networks with delay. In [27], the robust exponential
synchronization problem of a class of chaotic delayed neural networks
with different parametric uncertainties was studied. In [28], the global
stability analysis of fractional-order Hopfield neural networks with
time delay was investigated. Based on the stability theory of linear
fractional systems with time delays, Ref. [29] investigated the syn-
chronization between fractional chaotic systems with delay. Note that
the models in [28,29] admit the single time delay. However, due to the
difficulty in dealing with stability of nonlinear fractional systems with
delays, there are few works on the stability of nonlinear fractional
neural networks with multiple time delays.

In this paper, Mittag–Leffler functions are first showed to be
positive. Based on that, some comparison principles for linear
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fractional systems with multiple time delays are presented. Note
from the comparison principle that the stability of the original
systems will follow from that of the comparison system. Using the
obtained results, stability of nonlinear fractional-order cellular
neural networks with multiple time delays is investigated. By
constructing Lyapunov functions, some conditions ensuring stabi-
lity are obtained in terms of the inequality satisfied by the frac-
tional derivative of Lyapunov functions.

The paper is organized as follows. In Section 2, some prelimin-
aries about fractional calculus and some lemmas are presented. In
Section 3, comparison principles for fractional-order systems with
multiple time delays are derived. In Section 4, stability criteria of
fractional-order cellular neural networks with multiple time delays
are given. In Section 5, numerical simulations are performed to
show the effectiveness of theoretical analysis. Finally, some conclu-
sions are drawn in Section 6.

2. Preliminaries

In fractional calculus, the traditional definitions of the integral
and derivative of a function are generalized from integer orders to
arbitrary ones. In the time domain, the fractional-order derivative
and integral operators are defined by a Laplace convolution
operation as follows.

Definition 1 (Kilbas et al. [20, p. 92]). Caputo fractional derivative
with order α for function x(t) is defined as

CDα
t0 xðtÞ ¼

1
Γðm�αÞ

Z t

t0
ðt�τÞm�α�1xðmÞðτÞ dτ;

where 0rm�1rαom, mAZþ , and t ¼ t0 is the initial time, Γð�Þ
is the Gamma function.

Definition 2 (Kilbas et al. [20, p. 69]). Riemann–Liouville fractional
integral of order α40 for a function f: R-R is defined as

Iαt0 f ðtÞ ¼
1

FðαÞ
Z t

t0
ðt�τÞα�1f ðτÞ dτ;

where t ¼ t0 is the initial time, Γð�Þ is the Gamma function.

Definition 3 (Kilbas et al. [20, p. 70]). Riemann–Liouville fractional
derivative with order α for function x: R-R is defined as

RLDα
t0 xðtÞ ¼

1
Γðm�αÞ

dm

dtm

Z t

t0
ðt�τÞm�α�1xðτÞ dτ;

where 0rm�1rαom, mAZþ , and t ¼ t0 is the initial time, Γð�Þ
is the Gamma function.

The Laplace transform of the Caputo fractional-order derivative is

LðCDα
0 xðtÞÞ ¼ sαLðxðtÞÞ�

Xn�1

k ¼ 0

sα�k�1xðkÞð0Þ;

where α40, n¼ ½a�þ1. Since the initial conditions of Laplace
transform of Caputo derivatives take the same forms as those in
classic integer-order cases, the Caputo derivative is employed in this
paper.

Lemma 1 (Aguila-Camacho et al. [30]). Let xðtÞARn be a continuous
and derivable function. Then, for any time instant tZt0

1
2
CDα

t0 x
2ðtÞrxðtÞCDα

t0 xðtÞ; 8αA ð0;1Þ:

Lemma 2. Consider the following fractional-order differential
equation:

CDα
0;t xðtÞ ¼ �βxðtÞx0 ¼ xð0Þ ¼ 1; :

n
ð1Þ

If β40, then xðtÞ40 for all tZ0, that is Eαð�βtαÞ40 for all tZ0.

Proof. From Theorem 3.25 in [20, p. 202], we have x(t) is
continuous. Using Reductio ad absurdum, assume that t1 is the
first point such that xðtÞ ¼ 0, it means that when tot1, xðtÞ40;
when t ¼ t1, xðtÞ ¼ 0. Then we have ½xðtÞ�0t ¼ t �1

o0. One obtains

CDα
0;t1 xðtÞ ¼

1
Γð1�αÞ

Z t1

0
ðt1�τÞ�α½xðτÞ�0 dτ

¼ 1
Γð1�αÞ

Z t1

0
ðt1�τÞ�α dxðτÞ

¼ xðτÞðt1�τÞ�α

Γð1�αÞ

����
τ ¼ t1

τ ¼ 0
� α
Γð1�αÞ

Z t1

0
ðt1�τÞ�α�1xðτÞ dτ; ð2Þ

where

xðτÞðt1�τÞ�α

Γð1�αÞ

����
τ ¼ t1

τ ¼ 0
¼ lim

τ-t1

xðτÞ
ðt1�τÞαΓð1�αÞ�

1
tα1Γð1�αÞ

¼ lim
τ-t1

x0ðτÞðt1�τÞ1�α

αΓð1�αÞ � 1
tα1Γð1�αÞ

¼ � 1
tα1Γð1�αÞ: ð3Þ

Submitting (3) into (2), one obtains

CDα
0;t1 xðtÞ ¼ � 1

tα1Γð1�αÞ�
α

Γð1�αÞ
Z t1

0
ðt1�τÞ�α�1xðτÞ dτ

¼ � 1
tα1Γð1�αÞ�

α
Γð1�αÞ

Z t �1

0
ðt1�τÞ�α�1xðτÞ dτo0:

ð4Þ
On the other hand, CDα

0;t1 xðtÞ ¼ �βxðt1Þ ¼ 0. That is a contradiction,
so xðtÞ40, namely, Eαð�βtαÞ40, since Eαð�βtαÞ is the unique
solution of Cauchy problem (1) (see, for example, Ref. [20]). This
completes the proof.□

Then we consider the following Riemann–Liouville fractional-
order differential equation:

RLDα
0;t xðtÞ ¼ �λxðtÞ; I1�α

0 xð0þÞ¼ b40; :
n

ð5Þ

where 0oαo1, λ40, xðtÞAR1. From Theorem 4.1 in [20], Eq. (5)
has a unique solution xðtÞ ¼ btα�1Eα;αð�λtαÞ.

Lemma 3. Supposing that x(t) is the solution of Eq. (5), then xðtÞ40,
that is, Eα;αð�λtαÞ40.

Proof. Note that the solution x(t) is continuous and differentiable
in ð0; þ1Þ. Using Reductio ad absurdum, assume that t1 is the first
time such that xðtÞ ¼ 0. It means that when tot1, xðtÞ40; when
t ¼ t1, xðtÞ ¼ 0. Since RLDα

0;t xðtÞ ¼ ðd=dtÞI1�α
0 xðtÞ, let f ðtÞ ¼ I1�α

0 xðtÞ,
then (5) can be written into

f 0ðtÞ ¼ �λxðtÞ; f 0ðt�1 Þ ¼ 0:

Let δ40 be small enough, we have

Γð1�αÞðf ðt1�δÞ� f ðt1ÞÞ ¼
Z t1 �δ

0
ðt1�δ�τÞ�αxðτÞ dτ

�
Z t1

0
ðt1�τÞ�αxðτÞ dτ: ð6Þ

Let τ0 ¼ δþτ, then one hasZ t1 �δ

0
ðt1�δ�τÞ�αxðτÞ dτ¼

Z t1

δ
ðt1�τ0Þ�αxðτ0 �δÞ dτ0: ð7Þ
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