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a b s t r a c t

In this paper, based on recently developed deterministic learning (DL) theory, we investigate the problem
of stabilization for an underactuated rigid spacecraft with unknown system dynamics. Our objective is to
learn the unknown underactuated system dynamics while tracking to a desired orbit and design the
control law to achieve stabilization. First, the system dynamic and kinematic equations are given, the
kinematic equation is described by the (w, z) parametrization. Second, an adaptive neural network (NN)
controller with the employed radial basis function (RBF) is designed to guarantee the stability of the
underactuated rigid spacecraft system and the tracking performance. The unknown dynamics of under-
actuated rigid spacecraft system can be approximated by NN in a local region and the learned knowledge
is stored in constant RBF networks. The accessorial variables γ1 and γ2 are imported in the designing course
of the control laws via backstepping method. Third, when repeating same or similar control tasks, the
learned knowledge can be recalled and reused to achieve guaranteed stability with little effort. Finally,
simulation studies are included to demonstrate the effectiveness of the proposed method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there has been increasing interest in designing con-
trollers for the orientation and tracking problems of the under-
actuated rigid spacecraft [1–15]. Underactuated control is a scenario
where a system is with fewer independent control inputs than
degrees of freedom. Rigid spacecraft models with two controls
cannot be locally asymptotically stabilized by means of smooth pure
state feedbacks [16]. Available stabilization methods include time-
varying feedbacks [16–19] and discontinuous feedbacks [20–22].
Readers can refer to [4] for a complete literature survey (up to the
time of its publication) of attitude control of rigid spacecraft using
reduced inputs.

In [16], explicit smooth periodic time-varying feedback has been
proposed. It combined center manifold theory with time-averaging
and Lyapunov techniques. To yield exponential stabilization, an
almost continuous and periodic control law was proposed in [17] by
switching between two different control laws and by using homo-
geneous method and Lyapunov technique. Time-varying control laws
were used in [18] to circumvent the topological obstruction to smooth
stabilizability due to Brockett's condition [23]. Nevertheless, most of
the existing time-varying control results suffer from the drawback
that the designed control laws are very complex and the conver-

gence of system states is slow. In the discontinuous feedbacks, several
research results have been achieved. For example, stabilizing feedback
control laws were proposed in [24] for the kinematic system of an
underactuated axisymmetric spacecraft subject to input constraints.
The flat outputs of the system were computed and used to generate
reference trajectories for the tracking problem. In [8], under zero-
momentum restriction, a singular quaternion feedback controller was
first derived based on the generalized dynamic inverse method to
stabilize the attitude kinematics. By introducing a novel saturated
function, this controller was developed into a switching control logic
to account for the singularities as well as yielding bounded inputs.
Then a full-state feedback with bounded wheel speeds was synthe-
sized to globally reorientate the spacecraft to any desired orientation.

Precise attitude control in the presence of uncertain nature of
spacecraft dynamical systems has attracted considerable research
interest in the existing literature [25–31]. Although the existing
literature addresses important issues related to attitude control of
spacecraft, such as adapting the control system to modeling uncer-
tainties, only limited results explicitly deal with underactuated
systems [32]. How to approximate the unknown system dynamics
of the underactuated spacecraft during the stable closed-loop control
process still remains a problem.

Recently, a deterministic learning (DL) theory [33,34] was pro-
posed for neural network (NN) approximation of nonlinear dynamical
systems. It is shown that, by using localized radial basis function (RBF)
NNs, almost any periodic or recurrent trajectory can lead to the
satisfaction of a partial persistence of excitation (PE) condition. This
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partial PE condition leads to exponential stability of a class of linear
time-varying adaptive systems. Accurate NN approximation of the
system dynamics is achieved in a local region along the periodic
or recurrent trajectory. This provides us with a new solution to the
problem of approximating the unknown system dynamics of the
underactuated spacecraft during the stable closed-loop control
process.

In this paper, based on DL theory, we investigate the problem
of stabilization for an underactuated rigid spacecraft with unknown
system dynamics. Our objective is to learn the unknown under-
actuated system dynamics while tracking to a desired orbit and
design the control law to achieve stabilization. First, the system
dynamic and kinematic equations are given, the kinematic equation
is described by the (w, z) parametrization. Second, an adaptive NN
controller with the employed RBF is designed to guarantee the
stability of the underactuated rigid spacecraft system and the
tracking performance. The unknown dynamics of the underactuated
rigid spacecraft system can be approximated by NN in a local region
and the learned knowledge is stored in constant RBF networks. The
accessorial variables γ1 and γ2 were imported in the designing course
of the control laws via backstepping method. Third, when repeating
same or similar control tasks, the learned knowledge can be recalled
and reused to achieve guaranteed stability with little effort.

The rest of the paper is organized as follows. Section 2 briefly
describes the problem formulation and preliminaries. Section 3
gives the equations of motion. Learning from NN control of under-
actuated spacecraft is presented in Section 4. Section 5 presents the
neural learning control scheme to guarantee control performance in
same or similar control tasks. Simulation results are included in
Section 6. Section 7 contains concluding remarks.

2. Preliminaries

2.1. Localized RBF networks

The RBF networks can be described by f nnðZÞ ¼
PN

i ¼ 1 wisiðZÞ ¼
WTSðZÞ, where ZAΩZ � Rp is the input vector, W ¼ ½w1;…;wN�T A
RN is the weight vector, N is the NN node number, and SðZÞ ¼
½s1ðJZ�μ1 J Þ;…; sNðJZ�μN J Þ�T is the regressor vector, with

siðJZ�μi J Þ ¼ exp �ðZ�μiÞT ðZ�μiÞ
η2i

� �
; i¼ 1;…;N being a Gaussian RBF,

μi being the center of the receptive field and ηi being the width of
the receptive field. It has been proven in [35] that an RBF network,
with sufficiently large node number N and appropriately placed
node centers and variances, can approximate any continuous
function f ðZÞ : ΩZ-R over a compact set ΩZ � Rq to arbitrary
accuracy according to f ðZÞ ¼WnTSðZÞþϵ; 8ZAΩZ where Wn are
the ideal constant weights, ϵ is the approximation error. It is
normally assumed that there exists the ideal weight vector Wn

such that jϵjoϵn (with ϵn40) for all ZAΩZ . Moreover, for any
bounded trajectory Z(t) within the compact set ΩZ, f(Z) can be
approximated by using a limited number of neurons located in a

local region along the trajectory: f ðZÞ ¼WnT
ζ SζðZÞþϵζ , where sub-

script ð�Þζ stands for the regions close to the trajectory Z(t),

SζðZÞ ¼ ½sj1ðZÞ;…; sjζðZÞ�T ARNζ , with NζoN, jsji j4 ιðji ¼ j1;…; jζÞ,
ι40 is a small positive constant, Wn

ζ ¼ ½wn

j1
;…;wn

jζ
�, and ϵζ is the

approximation error, with ϵζ ¼ OðϵÞ ¼ OðϵnÞ.
Based on the previous results on PE property of RBF networks,

Wang and Hill [33] has proved that for a localized RBF network
WTSðZÞ whose centers placed on a regular lattice, almost any
recurrent trajectory Z(t) can lead to the satisfaction of the PE
condition of regressor subvector SζðZÞ.

2.2. DL theory

In DL theory, identification of system dynamics of general
nonlinear systems is achieved according to the following elements:
(i) employment of localized RBF networks; (ii) satisfaction of a
partial PE condition; (iii) exponential stability of the adaptive
system along the periodic or recurrent orbit; (iv) locally accurate
NN approximation of the unknown system dynamics [33]. Choose

W ¼meantA ½ta ;tb �Ŵ ðtÞ ð1Þ
with ½ta; tb�; tb4ta4T representing a time segment after the
transient process, Ŵ being the estimate of Wn. Locally accurate
approximation of system dynamics along the tracking orbit φζ can
be obtained as follows [33]:

f ðZÞ ¼WnT
ζ SζðZÞþϵζ ¼ Ŵ

T
SðZÞþϵ1 ¼W

T
SðZÞþϵ2 ð2Þ

where both ϵ1 and ϵ2 are close to ϵn.
In [34], a lemma about the exponential stability of a class of

linear time-varying systems associated with adaptive neural con-
trol of nonlinear systems with unknown affine terms is presented
as follows:
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with e1ARn�q, e2ARq, θARp, Að�Þ : ½0;1Þ-Rn�n, Sð�Þ : ½0;1Þ-Rp�q,
Gð�Þ : ½0;1Þ-Rq�q and Γ ¼ΓT 40. For ease of description, define
BðtÞ ¼ ½0 SðtÞ�ARp�n, PðtÞ ¼ block�diagfI;GðtÞgARn�n, where block-
diag here refers to block diagonal form and let CðtÞ ¼ΓBðtÞPðtÞ.

Assumption 1. There exists a ϕM40 such that, for all tZ0, the
following bound is satisfied

max JBðtÞJ ; JdBðtÞ
dt

J
� �

rϕM ð4Þ

Assumption 2. There exist symmetric matrices P(t) and Q(t) such
that AT ðtÞPðtÞþPðtÞAðtÞþ _P ðtÞ ¼ �Q ðtÞ. Furthermore, (pm, pM , qm
and qM40 such that, pmIrPðtÞrpMI and qmIrQ ðtÞrqMI.

With Assumptions 1 and 2, Liu et al. [34] stated that system (3)
is uniformly globally exponentially stable in the compact setΩ if S
(t) satisfies the PE condition. The proof is omitted here for clarity
and conciseness.

3. Equation of motion

3.1. Dynamics model

The equations describing the rotational motion of a rigid body
are Euler's equations of motion [36]. Assume that the actuators are
reaction wheels and one reaction wheel failure on the Z-axis.
Neglect the disturbance torque, and the corresponding dynamic
equation for the underactuated spacecraft is [36]

_ω1 ¼
I2� I3
I1

ω2ω3þ
T1

I1

_ω2 ¼
I3� I1
I2

ω1ω3þ
T2

I2

_ω3 ¼
I1� I2
I3

ω1ω2þ
T3

I3
;

8>>>>>>><
>>>>>>>:

ð5Þ

where ω1;ω2;ω3 denote the components of the body angular
velocity vector with respect to the body principal axes, T1; T2; T3

are the external torques, and the positive scalars I1; I2; I3 are the
principal moments of inertia of the body with respect to its center
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