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a b s t r a c t

This paper focuses on the problem of delay-dependent dissipativity analysis for a class of neural
networks with time-varying delays. A free-matrix-based inequality method is developed by introducing
a set of slack variables, which can be optimized via existing convex optimization algorithms. Then, by
employing Lyapunov functional approach, sufficient conditions are derived to guarantee that the
considered neural networks are strictly ðQ;S;RÞ-γ-dissipative. The conditions are presented in terms
of linear matrix inequalities and can be readily checked and solved. Numerical examples are finally
provided to demonstrate the effectiveness and advantages of the proposed new design techniques.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the last decades, neural networks have received consider-
able attentions owing to their successful applications in a variety of
areas, such as image processing, associative memory, pattern recogni-
tion, and optimization problem [1–3]. In the implementation of
artificial neural networks, time delays cannot be avoided as a result
of the inherent communication time between neurons and the finite
switching speed of amplifiers, which might cause oscillation, even
destabilization of neural networks. Therefore, many efforts have been
made to the stability analysis of neural networks [4–31]. Both delay-
independent [4–9] and delay-dependent [11–31] conditions have been
developed. The delay-dependent conditions, which include the size
information of time-delay, are usually less conservative than delay-
independent ones, especially for neural networks with small delays.
Thus, more attentions have been paid to delay-dependent conditions.

In recent years, the topic of dissipativity has attracted a great deal
of attention as dissipativity is an important property of physical

systems, which is closely related with the intuitive phenomenon of
loss or dissipation of energy. Generally, dissipativity tells more than
stability [37]. In [38], the problem of reliable dissipative control of
stochastic hybrid systems has been addressed, where two kinds of
controllers have been designed to guarantee the stochastic hybrid
system to be strictly dissipative. In [39], the dissipativity analysis of
singular systems with time-delay has been investigated. In addition,
the dissipativity problem has been addressed for continuous-time
neural networks [40] and discrete-time neural networks [41], respec-
tively. Recently, the problem of robust dissipativity has been investi-
gated for neural networks with time-delay and randomly occurring
uncertainties in [48], where some dissipativity conditions have been
established by using Jensen inequality. However, it was pointed in [36]
that the results derived by Jensen inequality are very conservative. In
[49], improved dissipativity conditions have been obtained via a
Wirtinger-based inequality. However, there is room for further
investigation.

In this paper, we investigate the problem of dissipativity analysis
for neural networks with a time-varying delay. A free-matrix-based
inequality is firstly proposed. It is theoretically proved that the
proposed inequality encompasses some existing ones as special cases.
By utilizing the new inequality, less conservative dissipativity condi-
tions are established. Numerical examples are given to demonstrate
the effectiveness and the improvement of the proposed approach.

Notation: Throughout this paper, the superscripts ‘�1’ and ‘T’
stand for the inverse and transpose of a matrix, respectively; Rn

denotes the n-dimensional Euclidean space; Rn�m is the set of all n�
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m real matrices; P40 means that the matrix P is symmetric and
positive definite; diagf⋯g denotes a block-diagonal matrix; I and
0 represent the identity matrix and a zero matrix, respectively; the
symmetric terms in a symmetric matrix are denoted by n; and
SymfXg ¼ XþXT . Matrices, if it not explicitly stated, are assumed to
have compatible dimensions.

2. Preliminaries

Consider the following uncertain neural network:

_xðtÞ ¼ �AxðtÞþW0gðxðtÞÞþW1gðxðt�τðtÞÞÞþuðtÞ
yðtÞ ¼ gðxðtÞÞ

(
ð1Þ

where xðtÞ ¼ x1ðtÞ x2ðtÞ ⋯ xnðtÞ½ �T and gðxðtÞÞ ¼ g1ðx1ðtÞÞ g2
� ðx2ðtÞÞ ⋯

gnðxnðtÞÞ�T are the neuron state vector and the neuron activation
function, respectively; u(t) and y(t) are the input and the output of the
neural network; A¼ diagfa1; a2;…; ang is a positive diagonal matrix,
W0 andW1 are known connectionweight matrices; the delay, τðtÞ, is a
time-varying function satisfying

0rτðtÞrτ ; _τðtÞrμ ð2Þ
where τ and μ are known constants.

Assumption 1. The function gið�Þ in (1) are continuous and
bounded, and satisfy

k�
i rgiðα1Þ�giðα2Þ

α1�α2
rkþ

i ; i¼ 1;2;…;n ð3Þ

where gið0Þ ¼ 0, α1, α2AR, α1aα2, and k�
i and kþ

i are known real
scalars.

To introduce the property of dissipativity, let us define an
energy supply function as follows:

Gðu; y; tnÞ ¼ 〈y;Qy〉tn þ2〈y;Su〉tn þ 〈u;Ru〉tn ; 8 tnZ0 ð4Þ
where Q, S and R are real matrices with Q, R symmetric, and
〈a; b〉tn ¼

R tn

0 aTb dt. Without loss of generality, it is assumed that
Qr0 and denoted that �Q¼QT

�Q� for some Q� .
In the sequel, we introduce the following definition and

lemmas, which are indispensable to derive our main results.

Definition 1. Neural network (1) is said to be strictly ðQ;S;RÞ-γ-
dissipative if, for some scalar γ40, the following inequality:

Gðu; y; tnÞZγ〈u;u〉tn ; 8 tnZ0 ð5Þ
holds under zero initial condition.

Lemma 1 (Jensen inequality [32]). For R40, and a vector function
x : α;β

� �
-Rn such that the integrations concerned are well defined,

the following inequality holds:Z β

α
xT ðsÞ dsR

Z β

α
xðsÞ dsrðβ�αÞ

Z β

α
xT ðsÞRxðsÞ ds ð6Þ

Lemma 2 ([33]). Given positive integers m and n, a scalar βAð0;1Þ,
a given R40, and two matrices H1, H2ARn�m, define, for all vector
ξARm, the function Θðβ;RÞ described by

Θðβ;RÞ ¼ 1
β
ξTHT

1RH1ξþ
1

1�β
ξTHT

2RH2ξ ð7Þ

then, if there exists a matrix XARn�n such that
R X

XT R

� �
40, the

following inequality holds:

min
βA ð0;1Þ

Θðβ;RÞZ
H1ξ
H2ξ

" #T
R X
XT R

� � H1ξ
H2ξ

" #
ð8Þ

Lemma 3. Let x be a differentiable signal in α;β
� �

-Rn, for sym-
metric matrices RARn�n, X, ZAR3n�3n, and any matrices YAR3n�3n,
N1, N2AR3n�n satisfied

Φ¼
X Y N1

n Z N2

n n R

2
64

3
75Z0

the following inequality holds:

� R β
α
_xT sð ÞR _x sð Þ dsrϖTΩ̂ϖ ð9Þ

where

Ω̂ ¼ ðβ�αÞðXþ1
3
ZÞþSym N1G1þN2G2f g

G1 ¼ eT1�eT2
h iT

G2 ¼ eT1þeT2�2eT3
h iT

e1 ¼ I 0 0½ �; e2 ¼ 0 I 0½ �; e3 ¼ 0 0 I½ �

ϖ ¼ xT β
� �

xT αð Þ 1
β�α

Z β

α
xT sð Þ ds

" #T

Proof. Define

f ðsÞ ¼ 2s�β�α
β�α

ζðsÞ ¼ ϖT f ðsÞϖT _xT ðsÞ
h iT

it is easy to see that

ζT ðsÞΦζðsÞZ0 ð10Þ
Integrating the left side of (10) from α to β yieldsZ β

α
ζT ðsÞΦζðsÞ ds¼ ðβ�αÞϖTXϖþðβ�αÞ

3
ϖTZϖ

þ2ϖTN1½e1�e2�ϖ
þ2ϖTN2½e1þe2�2e3�ϖ

þ
Z β

α
_xT sð ÞR _x sð Þ ds ð11Þ

To sum up, one can get

�
Z β

α
_xT sð ÞR _x sð Þ dsr ðβ�αÞϖTXϖþðβ�αÞ

3
ϖTZϖ

þ2ϖTN1½e1�e2�ϖ
þ2ϖTN2½e1þe2�2e3�ϖ

¼ϖTΩ̂ϖ

This completes the proof.□

Remark 1. It is worth mentioning that the Wirtinger-based
inequality proposed in [36], which is shown more tighter than
the well-known Jessen inequality, is a spacial case of (9). By setting

N1 ¼ � 1
β�α

R
1

β�α
R 0

� �T

N2 ¼ � 3
β�α

R � 3
β�α

R
6

β�α
R

� �T
X ¼N1R

�1NT
1 ; Y ¼N1R

�1NT
2 ; Z ¼N2R

�1NT
2

Lemma 3 reduces to Corollary 5 in [36].
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