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In order to improve the robustness of the classcial LSSVM when dealing with sample points in the
presence of outliers, we have developed a robust weighted LSSVM (reweighted LSSVM) based on the
least trimmed squares technique (LTS). The procedure of the reweighted LSSVM includes two stages,
respectively used to increase the robustness and statistical efficiency of the estimator. In the first stage,
LTS-based LSSVM (LSSVM-LTS) with C-steps was adopted to obtain robust simulation results at the cost
of losing statistical efficiency to some extent. Thus, in the second stage, the results computed in the first
stage were optimized with a weighted LSSVM to improve efficiency. Two groups of examples including
numerical tests and real-world benchmark examples were respectively employed to compare the
robustness of the reweighted LSSVM with those of the classical LSSVM, the weighted LSSVM and LSSVM-
LTS. Numerical tests indicate that the reweighted LSSVM is comparable to the weighted LSSVM, and
more accurate than the classical LSSVM and LSSVM-LTS when the contaminating proportion is small (i.e.
0.1 and 0.2), whereas with the increase of contaminating proportion, the reweighted LSSVM performs
much better than other methods. The real-world exmaple of regressing seven benchmark datasets
demonstrates that the reweighted LSSVM is always more accurate than other versions of LSSVM. In
conclusion, the newly developed method can be considered as an alternative to function estimation,
especially for sample points in the presence of outliers.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machines (SVM) for classification and nonlinear
function estimation, as introduced by Vapnik [1-3], is based on the
structural risk minimization principle which strikes a balance
between the traditional empirical risk and model complexity. It
is implemented by maximizing margin between the samples of
two classes and simultaneously minimizing the classification
errors of training samples by convex optimization without suffer-
ing from many local minima [4-7]. Due to its appealing general-
ization performance, SVM has been widely accepted as an
important tool in the area of pattern recognition including
classification, regression and function approximation [8-12].
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Driven by the dream to make the approach as simple as
possible, least squares versions of support vector machine (LSSVM)
have been presented [13-15]. LSSVM only needs to solve a linear
equation set rather than dealing with a quadratic programming
problem, by using equality constraints instead of inequality ones
and a least squares loss function, which greatly reduces the
computational complexity. However, despite these computation-
ally attractive features, a potential drawback of LSSVM is that it is
only optimal when sample points follow a normal distribution
[16-18]. Namely, it is sensitive to outliers and noises with a non-
normal distribution.

Many researches have been conducted to improve the robust-
ness of LSSVM for dataset in the presence of outliers. Some authors
argued that outliers should be filtered out first by some advanced
techniques, and then the non-robust LSSVM is used to train the
remaining sample points. This is the well known ‘two-step’
method. For example, Wen et al. [19] used a criterion derived
from least trimmed squares regression to recursively eliminate
outliers. Chuang and Lee [20] removed those points with the slack
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variables bigger than the three times standard deviation. However,
the detection of outliers is difficult only by the results of LSSVM
when there is no prior knowledge, as LSSVM itself is sensitive to
outliers.

Some scholars were prone to developing weighted LSSVMs to
mitigate the influence of outliers. The core idea of this approach is
how to accurately determine the weights of sample points. For
example, Suykens et al. [21] pointed out that samples with large
simulation residuals by the classical LSSVM should have smaller
weights. Wen et al. [22] indicated that samples with large
distances from others have relatively smaller weights. Brabanter
et al. [23] compared four different types of weighting function
including Huber, Hampel, Logistic and Myriad, and found that
Logistic and Myriad weighting function are more robust than the
other two functions in most cases. Motivated by the weighted
LSSVM, some adaptive versions has been proposed, such as
adaptive weighted LSSVM integrated with outlier detection [24]
and weighted Lq adaptive LSSVM [25]. However, many authors
indicated that it is unclear whether these weighting schemes are
optimal with respect to the dataset subject to noises and outliers.

Some authors preferred to use robust loss functions instead of
weighting schemes to reduce the effect of outliers. For example,
Chen et al. [26] adopted the maximum correntropy criterion as the
loss function, which is derived from information theoretic learn-
ing. Yang et al. [27] used a truncated least squares loss function.
Yet, these robust loss functions are non-convex, so their corre-
sponding objective functions are hard to be optimized without
some transformations. Furthermore, many parameters in the loss
function must be pre-determined by an optimization technique,
which costs much time.

Generally, the procedure of the above robust methods consists
of at least two stages. The first stage always employs the classical
LSSVM to obtain initial simulation results. Namely, the accuracy of
the robust LSSVMs depends on the results of the unweighted
LSSVM to some extent [21,24,25]. Thus, if the unweighted LSSVM
regression obtains unsatisfactory results, the robust versions may
not perform well. Hence, to improve the prediction accuracy of
LSSVMs, the initial results in the first stage should be robust.

It has been well known in statistics that the least trimmed
squares (LTS) criterion is much more robust than the least squares
method, and has been widely applied to the context of non-
parametric regression [28-31]. In principle, LTS with a smooth
objective function has a high breakdown point [30,32-34]. Hence,
in this paper, we extend the LTS regression method to the context
of LSSVM, and propose a robust LSSVM, termed as LSSVM-LTS.
Furthermore, in order to improve the statistical efficiency of
LSSVM-LTS, a weighted LSSVM is introduced to optimize simula-
tion results.

The rest of this paper is organized as follows. In Section 2, we
briefly review LSSVM and weighted LSSVM, respectively. In
Section 3, we propose LSSVM-LTS and provide an algorithm to
compute the LSSVM-LTS estimator. Furthermore, a weighted
LSSVM is introduced to increase the statistical efficiency of
LSSVM-LTS estimator. In Section 4, two groups of examples
including numerical tests and real-world examples are respec-
tively adopted to analyze the robustness of our newly developed
method. Conclusions are given in Section 5.

2. Least squares support vector regression and weighted least
squares support vector regression

Given a training set of n samples {x;,y;};_, with input data
x; e RY and output value y; € R, the objective function of LSSVM is

n
i=

expressed as follows:
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where y is a regularized parameter, controlling the tradeoff
between the training error minimization and smoothness of the
estimated function; w is the normal of the hyperplane; e; is the
error of the ith sample points; ¢(x) is a nonlinear function that
maps x to a high-dimensional feature space and b is a bias term.

In terms of Lagrangian function, the objective function of
LSSVM can be transformed into the system of linear equations as
follows:
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K= o) Xj) = K(x;,x;). K is a kernel matrix. In this paper, radial
basis function kernel was used, expressed as

K(x;,x;)=exp(—||x—x;| |2/20%), where ¢ is the kernel width
parameter.
The objective function of the weighted LSSVM is as follows:
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where t; is the weight of the ith sample point. It can be set as
follows [21]:
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where $ is a robust scale estimator; ¢; and ¢, are tuning constants
The system of the weighted LSSVM linear equations is as
follows:
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Comparing Eq. (3) with Eq. (7), it can be found that when we
take t=1, the weighted LSSVM is same to the classical LSSVM.

After obtaining a and b by solving Egs. (3) or (7), we finally get
the following LSSVM model for function estimation,

n
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In principle, the classical LSSVM is optimal only when the
errors follow a Gaussian distribution. Thus, in the case of outliers
or non-Gaussian distributions with heavy tails on data, the
weighted LSSVM can be employed to further improve the simula-
tion results of the classical LSSVM.

3. A weighted LSSVM based on LSSVM-LTS
3.1. Least trimmed squares based LSSVM (LSSVM-LTS)
LTS regression corresponds to finding the subset of h observa-

tions whose least squares fit produces the smallest sum of squared
residuals. Motivated by this idea, we define the objective function
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