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h i g h l i g h t s

• A novel model-free algorithm, Neural Inverse Reinforcement Learning, is introduced in performing autonomous navigation tasks.
• A nonlinear neural policy representation is proposed to establish the mapping between the state and action spaces.
• Computer-based expert demonstrations are supplemented to learning robots when human experts are not available in some extreme navigation tasks.
• A refinement operation based on maximum a posteriori is designed to pretreat the demonstrations from suboptimal experts.
• This method can easily deal with large state spaces and generalize unvisited states in demonstrations.
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a b s t r a c t

Designing intelligent and robust autonomous navigation systems remains a great challenge in mobile
robotics. Inverse reinforcement learning (IRL) offers an efficient learning technique from expert
demonstrations to teach robots how to perform specific tasks without manually specifying the reward
function. Most of existing IRL algorithms assume the expert policy to be optimal and deterministic, and
are applied to experiments with relatively small-size state spaces. However, in autonomous navigation
tasks, the state spaces are frequently large and demonstrations can hardly visit all the states. Meanwhile
the expert policy may be non-optimal and stochastic. In this paper, we focus on IRL with large-scale and
high-dimensional state spaces by introducing the neural network to generalize the expert’s behaviors to
unvisited regions of the state space and an explicit policy representation is easily expressed by neural
network, even for the stochastic expert policy. An efficient and convenient algorithm, Neural Inverse
Reinforcement Learning (NIRL), is proposed. Experimental results on simulated autonomous navigation
tasks show that amobile robot using our approach can successfully navigate to the target positionwithout
colliding with unpredicted obstacles, largely reduce the learning time, and has a good generalization
performance on undemonstrated states. Hence prove the robot intelligence of autonomous navigation
transplanted from limited demonstrations to completely unknown tasks.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A rapid development of the robotic techniques has witnessed
the advent of modern robots in large numbers. More and more
robots are designed and produced to assist or replace our human
beings to perform complicated control operations and planning
tasks among plenty of domains. However, we are aware of the fact
that designing reliable control systems for autonomous robot tasks
is usually a complicated process, even for people specialized in
programming robots. The number of uncertain situations which a
robot may face and the wide spectrum of behaviors it may have to
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perform make the job of robot programming rather difficult. This
sort of manually programming is generally an expensive as well
as intense time-consuming process. Rather than pre-programming
a robot for all the behaviors, it would be more useful if the robot
could learn such tasks by themselves.

Recent researches has brought machine learning approaches
into the community of robotics in order to improve the robot au-
tonomous ability based on accumulated experiences. These arti-
ficial intelligent methods can be computationally less expensive
than classical ones and can largely ease the burden on human de-
signers.

In this paper, we are interested in designing intelligent mobile
robots. The autonomous navigation ability is thus one of the
fundamental skills, which requires a robot to traverse from some
start location to a goal location in the meanwhile to avoid any
potential collisions. Along the path, it must maintain knowledge
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of its own position, observe the surrounding environment, plan
actions to achieve its goal, and finally execute these actions. All
decisions must be made in real time, and the robot may be faced
with situations beyond the imagination of human designers. This
makes it impractical tomanually devise a policy for all the possible
tasks that the robot may have to perform.

Machine learning techniques has been successfully applied
to the state-of-the-art self-driving cars. Thrun et al. provided a
comprehensive survey of Stanley, the winning robot of the 2005
DARPA Grand Challenge [1]. This robotic car was a milestone
in the quest for self-driving cars. The pervasive use of machine
learning techniques in outdoor obstacle detection and terrain
mapping, both ahead and during the race, made Stanley robust
and precise. However, since the race environment was static,
Stanley was unable to navigate in traffic. Two years later, Junior, a
robotic vehicle capable of navigating urban in-traffic environments
autonomously was developed and won second place in the 2007
DARPA Urban Challenge [2]. The robot successfully demonstrated
merging, intersection handling, parking lot navigation, lane
changes and autonomous U-turns.

Reinforcement learning (RL) [3] is one of the machine learn-
ing methods that offers a powerful tool for constructing adaptive
and intelligent systems. In the framework of RL, the learner is a
decision-making agent that takes actions in an environment and
receives an reinforcement signal for its actions in trying to accom-
plish a task. The signal, well known as reward (or penalty), evalu-
ates an action’s outcome, and the agent seeks to learn to select a
sequence of actions, i.e. a policy, that maximize the total accumu-
lated reward over time. Significant applications of reinforcement
learning to enable the learning ability of autonomous systems can
be found in [4–8]. Kober et al. also summarized the reinforcement
learning techniques applied in robotics in [9].

The goal of a reinforcement learning agent is to collect as many
rewards as possible, and an informative reward function becomes
a fundamental assumption that a successful RL algorithm counts
on. This type of the evaluation of robot behaviors always needs to
be provided beforehand. However, in practice, defining the reward
function can itself be a challenge because an informative reward
function may be very hard to specify and exhaustive to tune for
large and complex problems [10]. Inverse Reinforcement Learning
(IRL) arose due to the curiosity of if a learning agent can discover
the underlying rewards from a bunch of demonstrated examples
of a desired behavior.

Rather than directly mimicking the expert with some super-
vised learning approach, IRL consists in learning a reward function
under which the policy demonstrated by the expert is optimal. IRL
is originally introduced in [11], where the authors addressed three
learning problems: IRL in finite state spaces, IRL in infinite state
spaces and IRL from sampled trajectories. In practice, it is easier
to get samples from an expert. However, the authors also noted
that the IRL problem is ill-posed. In fact, there exists a series of re-
ward functions, including constant functions, that may lead to the
same optimal policy. Abbeel andNg then introduced a new indirect
learning approach, named apprenticeship learning [12], where the
learning is less concerned about the actual reward function, and
the objective is to recover a policy that is close to the demonstrated
behavior. It is assumed that the reward is a sum of weighted state
features, and finds a reward function to match the demonstrator’s
feature expectations. This method may not explicitly recover the
expert’s reward function, but still output a policy that attains the
performance close to that of the expert. Thismethod is then imple-
mented in helicopter control [13].

The maximum margin planning (MMP) algorithm [14] uses
similar ideas, a linearized-features reward, where the learner
attempts to find a policy that make the provided demonstrations
look better than other policies by a margin, and minimizes a cost

function between observed and predicted actions by a subgradient
descent. Ratliff et al. extends the maximum margin planning
and developed the LEARCH algorithm [15], and applied it to
outdoor autonomous navigation. The idea of MMP also inspired
the structured classification based inverse reinforcement learning
(SCIRL) [16,17], where the authors use only sampled trajectories to
reduce IRL to a structured classification problem and do not need
to solve the direct RL process that many existing IRL algorithms
require. Similarly, the dynamic policy programming was adopted
in [18] in order to estimate the reward and the state value function
without solving the MDP.

The Bayesian inverse reinforcement learning approaches
[19,20] use probability distribution to tackle with the ill-posed
problem. They assume that the demonstrator samples state–action
sequences fromaprior distribution over possible reward functions,
and calculates a posterior on the reward function using Bayesian
inference.

Similar to Bayesian IRL, the maximum entropy algorithm [21]
use an MDP model for calculating a probability distribution on the
state-action pairs. Maximum entropy IRL focuses on the distribu-
tion over trajectories rather than pure actions. Later on, based on
themaximum entropy framework, the relative entropy inverse re-
inforcement learning algorithm using policy iteration is proposed
in [22]. It indirectly employs knowledge of the environment and
minimizes the relative entropy between the empirical distribution
of the trajectories under a baseline policy and the distribution of
the trajectories under a policy that matches the reward features of
the demonstrations. A stochastic gradient descent is used to mini-
mize the relative entropy.

Qiao and Beling proposed a Gaussian processes model and
use preference graphs to represent observations of decision
trajectories [23]. Levine et al. present a probabilistic algorithm for
nonlinear inverse reinforcement learning and they use Gaussian
process model to learn the reward as a nonlinear function [24].

Our research focuses on improving robot learning ability in
autonomous navigation tasks via inverse reinforcement learning.
An autonomous navigation task is a typical large-scale state-space
problem. The demonstrators can only cover a small subset of the
state spaces, and thus solving the generalization of state space is
a key issue. Most inverse reinforcement learning algorithms use a
linear feature-based state representations instead of directly using
states in order to generalize on undemonstrated states and do not
give an explicit policy representation in large-scale spaces.

In this paper, we present an efficient and convenient learning
algorithm, neural inverse reinforcement learning (NIRL), and apply
it to autonomous robot navigation tasks. We represent the states
using a linear combination of state and action features and adopt
an artificial neural network to generalize the expert’s actions to
unvisited regions of the state space. By this means, we propose
an explicit nonlinear policy representation. The maximummargin
method is applied to learn the reward function. The IRL algorithms
in the literature generally assume that a model of the transition
is known, which is unrealistic in an unpredictable navigation
problem. Our method, on the contrary, is model-free. Experiments
are conducted on simulated autonomous robot navigation, and
the results show that a mobile robot using our approach can
successfully accomplish an autonomous navigation task without
colliding with unpredicted obstacles. NIRL largely reduces the
learning time, and has a good generalization performance on
undemonstrated states. Therefore, NIRL is proved to be a reliable
and robust learning algorithm for endowing the mobile robots the
autonomy and the intelligence.

The rest of the paper is organized as follows. The next
section describes the fundamental background that we use in this
paper. Section 3 describes the autonomous mobile robot model.
The proposed nonlinear neural policy representation is given in
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