Robotics and Autonomous Systems 60 (2012) 1563-1578

Robotics and Autonomous Systems

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/robot

Rigorous design of robot software: A formal component-based approach™**

Tesnim Abdellatif?, Saddek Bensalem?, Jacques Combaz?, Lavindra de Silva b Felix Ingrand bx

2 Verimag/CNRS, Grenoble I Uni., France

b [AAS/CNRS, Toulouse Uni., France

ARTICLE INFO

ABSTRACT

Article history:

Received 21 November 2011
Received in revised form

7 September 2012

Accepted 14 September 2012
Available online 23 September 2012

Keywords:

Robotic software architecture
Controller synthesis
Verification and validation
Robotic functional layer
Robust software

We have recently started an effort to combine a state of the art tool for developing functional modules
of robotic systems (G®"oM) with a component based framework for implementing embedded real-time
systems (BIP). Unlike some works which study the connection between formal approaches and the highest
(decisional) level of the robot software architecture, where deliberative activities such as planning,
diagnostics, and execution control are conducted, we tackle the problem of using formal methods for
developing modules of the functional level of robots. Little attention has been drawn to the development
of these modules whose robustness is paramount to the robustness of the overall platform.

To this end, we have successfully developed the G*"oM/BIP component based design approach and
applied it to the functional level of a complex exploration rover. Here, we report on this work, and show
how we: (i) produce a very fine grained formal computational model of the robot functional level; (ii) run
the BIP engine on the real robot, which executes and enforces the model semantics at runtime; and (iii)
check the model offline for deadlock-freedom, as well as other safety properties.

Moreover, we also extended this paradigm in a number of promising directions: (i) introduced a real-
time BIP engine which can now use and control a timed BIP model; (ii) distributed the model and the
engine over multiple CPUs; (iii) proposed a user-friendly language for specifying constraints on the model;
and (iv) linked the model with a temporal plan execution controller. Interestingly, although our approach
was initially proposed for the lowest level of robot architectures, these more recent extensions now allow

us to model and manage the deliberation taking place at the decisional layer.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For the large scale deployment of robots in places such as
homes, shopping centers and hospitals, where there is close and
regular interaction with humans, robot software integrators and
developers may soon need to provide guarantees and formal proofs
to certification bodies that their robots are safe, dependable, and
behave correctly. This also applies to robots such as extraterrestrial
rovers, used in expensive and distant missions, which need to avoid
equipment damage and mission failure. Such guarantees may
involve proofs that a rover will not move while it is communicating
or even worse, while it is drilling, that the navigation software has
no fatal deadlock, or that a service robot will not extend its arm
dangerously while navigating or will not open its gripper while
holding a breakable object.

* The authors are in alphabetical order by last name.
*% Ppart of this work is funded by the ESA/ESTEC GOAC project and by the FNRAE
MARAE project. We thank Rongjie Yan for some useful discussions.
* Corresponding author. Tel.: +33 549056432.
E-mail addresses: tesnim.abdellatif@imag.fr (T. Abdellatif),
saddek.bensalem@imag.fr (S. Bensalem), jacques.combaz@imag.fr (J. Combaz),
ldesilva@laas.fr (L. de Silva), felix@laas.fr (F. Ingrand).

0921-8890/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2012.09.005

The most common method to ensure the correctness of a
system is testing (see [1] for a survey). Testing techniques have
been effective for finding bugs in many industrial applications.
Unfortunately, there is, in general, no way for a finite set of test
cases to cover all possible scenarios, and therefore, bugs may
remain undetected. Hence, in general, testing does not give any
guarantees on the correctness of the entire system. Consequently,
these approaches are impractical with complex autonomous and
embedded systems for even a small fraction of the total operating
space.

We have successfully proposed a novel software engineering
methodology for developing safe and dependable robotic sys-
tems [2,3]. With our approach, one can provide guarantees that the
robot will not perform actions that may lead to situations deemed
unsafe, i.e., those that may eventuate in undesired or catastrophic
consequences. Our approach (Section 3) relies on the integration of
two existing state-of-the-art methods, namely, (i) the G°"oM tool
of the LAAS architecture [4], used for specifying and implement-
ing the lowest level of robotic systems, and (ii) the BIP software
framework for formally modeling and verifying complex, real-time
component-based systems [5]. In this paper, we extend this ap-
proach to be used on complex robotic systems for designing both
the decisional and functional levels. We first present (in Section 4)

http://dx.doi.org/10.1016/j.robot.2012.09.005
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:tesnim.abdellatif@imag.fr
mailto:saddek.bensalem@imag.fr
mailto:jacques.combaz@imag.fr
mailto:ldesilva@laas.fr
mailto:felix@laas.fr
http://dx.doi.org/10.1016/j.robot.2012.09.005

1564 T. Abdellatif et al. / Robotics and Autonomous Systems 60 (2012) 1563-1578

a high-level language that allows roboticists to easily express spe-
cific constraints on the system. In light of early experimental find-
ings, we also provide insights into more recent work focused on
real-time features of a system. Indeed, we developed a real-time
version of BIP (Section 5), which takes into account execution time
and deadlines. We also used the real-time BIP engine as a temporal-
plan execution controller (Section 6). Section 7 presents results on
all of the above work. We then conclude the paper with a future
work section (Section 8), presenting a multi-CPU distributed ver-
sion of BIP which allows us to run it on modern robotic platforms,
and how we plan to use G®"oM3 to extend our approach toward
the ROS ecosystem, and a discussion section (Section 9).

2. State of the art in building robot software using formal
methods

Despite a growing concern to develop safe, robust, and
verifiable robotic systems, overall, robot software development
remains quite disconnected from the use of formal methods.
Moreover, the extent to which formal methods is used varies
different between the functional level and the decisional level of
robot software architectures.

2.1. The decisional level design

Formal methods have been more widely used together with
“decisional components” of robotic systems. The main reason
is perhaps because these decisional components already use
a “model” (for planning, diagnostics, etc.). In [6], the authors
propose a system relying on a model-based approach. The
objective is to abstract the system into a state transitions based
language modeling the dependability concerns. The programmers
specify state evolutions with invariants and a controller executes
this maintaining these invariants. To do that, the controller
estimates the most likely current state - using observation and
a probabilistic model of physical components - and finds the
most reliable sequence of commands to reach a specified goal
(i.e., with a minimum probability of failure). In [7], the authors
present the CIRCA SSP planner for hard real-time controllers. This
planner synthesizes off-line controllers from a domain description
(preconditions, postconditions and deadlines of tasks). CIRCA SSP
can then deduce the corresponding timed automaton to control the
system on-line, with respect to these constraints. This automaton
can be formally validated with model checking techniques.
Similarly, [8] discusses an approach for model checking the
AgentSpeak(L) agent programming language aimed at reactive
planning systems. The work describes a toolkit called CASP
(Checking AgentSpeak Programs) for supporting the use of model
checking techniques, in particular, for automatically translating
AgentSpeak(L) programs into a language understood by a model
checker. In [9], the authors present a system that allows the
translation from MPL (Model-based Processing Language) and
TDL (Task Description Language) - the executive language of the
CLARAty architecture[10] - to SMV, a symbolic model checker
language.

In [11], the authors discuss an approach for automatically
generating correct-by-construction robot controllers from high-
level representations of tasks given in Structured English, which
are translated into a subset of Linear Temporal Logic and eventually
into automata. In their work, complex and continuous missions can
be specified using the basic prepositions ‘between’, ‘near’, ‘within’,
‘inside’, and ‘outside’. An example of such a mission is “stay near A
unless the alarm is sounding”, where A is a location. Likewise, [12]
also deals with the synthesis of correct-by-construction controllers
based on temporal logic specifications. Here, finite state automata
based controllers are synthesized by a trajectory planner to satisfy

a given temporal specification, which is based on an abstract
model of the physical system. The authors show how the correct
behavior of an autonomous vehicle can be maintained using the
robot controller automatically synthesized.

2.2. The functional level design

On the functional side of robotic systems, the situation is
quite different. There are many popular software tools available
(e.g., OROCOS [13], CARMEN [14], Player Stage [15], Microsoft
Robotics Studio [16], and ROS [17]) to develop the functional level
of robotic systems. There are even some works which compare
them, e.g., [18,19]. Yet, none of these architectural tools and
frameworks proposes any extension or link with formal methods,
and validation or verification tools.

Recently, we proposed the R®C [20], a tool used between the
functional and decisional levels of a robotic system. The main
component of R2C is the state checker. This component encodes the
constraints of the system, specified in a language named EX°GEN.
At run-time it continuously checks if new requests are consistent
with the current execution state and the model of properties
to enforce. Another interesting early approach to prove various
formal properties of the functional level of robotic systems is the
ORCCAD system [21]. This development environment, based on the
Esterel [22] language, provides extensions to specify robot “tasks”
and “procedures”. However, this approach remains constrained by
the synchronous systems paradigm.

More generally, as advocated in [23], an important trend in
modern systems engineering is model-based design, which relies
on the use of explicit models to describe development activities
and their products. It aims at bridging the gap between application
software and its implementation by allowing predictability and
guidance through analysis of global models of the system under
development. The first model-based approaches, such as those
based on ADA, synchronous languages [24] and Matlab/Simulink,
support very specific notions of components and composition.
More recently, modeling languages, such as UML [25] and
AADL [26], attempt to be more generic. They support notions of
components that are independent from a particular programming
language, and put emphasis on system architecture as a means
to organize computation, communication, and implementation
constraints. Software and system component-based techniques
have not yet achieved a satisfactory level of maturity. Systems built
by assembling together independently developed and delivered
components often exhibit pathological behavior. Part of the
problem is that developers of these systems do not have a precise
way of expressing the behavior of components at their interfaces,
where inconsistencies may occur. Components may be developed
at different times and by different developers with, possibly,
different uses in mind. Their different internal assumptions, when
exposed to concurrent execution, can give rise to unexpected
behavior, e.g., race conditions, and deadlocks.

All these difficulties and weaknesses are amplified in embedded
robotic systems design in general. They cannot be overcome, unless
we solve the hard fundamental problems concerning the definition
of rigorous frameworks for component-based design.

3. Our approach

In past work we proposed an approach [27,3] to develop
safe and dependable functional levels of complex, real-world
robots, which relied on the integration of two state-of-the-art
technologies, namely: (i) G®*"oM [4] - a tool (part of the LAAS
architecture toolbox) that is used for specifying and implementing
the functional level of robots; and (ii) BIP [5] - a software
framework for formally modeling complex, real-time component-
based systems, with supporting tool-sets for verifying such
systems.

Download English Version:

https://daneshyari.com/en/article/411830

Download Persian Version:

https://daneshyari.com/article/411830

Daneshyari.com

https://daneshyari.com/en/article/411830
https://daneshyari.com/article/411830
https://daneshyari.com

