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a b s t r a c t

This paper discusses the stability condition for discrete-time multi-valued recurrent neural networks
(MVNRNNs) in asynchronous update mode. In the existing research literature, an MVNRNN in
asynchronous update mode has been found convergent if its weight matrix is Hermitian with
nonnegative diagonal entries. However, our finding has been that the weight matrix with zero diagonal
entries cannot guarantee the network stability. Furthermore, the new stability condition and proof is
offered to allow diagonal entries to be complex-valued, which extends previous theoretical result.
Simulation results are used to illustrate the theory.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The multi-valued neuron (MVN) was first introduced in [7], and
its theory was further extended in [5,8]. Neural networks with
MVN (MVNNNs) adopt a complex-valued activation function,
which maps complex-valued inputs into outputs on the unit circle
in the complex domain.

An MVN activation function is different to other neural net-
works' function. Firstly, function output is sensitive to input's
argument, which lies on ½0;2πÞ. Thus we should consider the
imaginary part and real part all together. Such situation never
happens in real-valued neural networks (NNs), or those complex-
valued NNs which deal with imaginary part and real part sepa-
rately. Secondly, many activation functions are monotonously
increasing or decreasing, and changing the output from its max-
imum to minimum involves time. However, MVN can switch its
output state quickly, by simply multiplying a complex number to
change its argument. It has been shown that the functionality of
an MVN is higher than the functionality of a sigmoidal neuron [6].

For example, a multilayer neural network based on MVN outper-
forms a classical multilayer feed-forward network and several
kernel-based NNs with faster learning speed and fewer neurons
[4]. Some successful recent applications of MVNNNs have been
reported in [1–4].

Dynamical analysis is of primary importance for emulation of
stability and of fixed points of recurrent neural networks (RNNs).
Comparing dynamical analysis work with real-valued analysis, the
work in complex-valued domain is more difficult because we only
get partial theoretical support from current mathematical theories.
For example, it seems impossible to study the dynamics of
continuous-time complex-valued MVNRNNs directly, because
MVN activation function is not holomorphic. Fortunately, the
requirement for holomorphism can sometimes be eliminated
when we deal with discrete-time RNNs. On the other hand, due
to the strong component correlation between real and imaginary
parts, the decrease or increase in either imaginary or real part
usually means nothing. In real-valued domain, it is common to
observe, calculate, or analyze the trajectory of RNNs simply based
on the network outputs' decrease or increase. However, in
complex-valued domain, we need to investigate the trajectory
movement on the whole complex plane.

Stability and complete stability are different concepts. If a
network is stable, stable fixed point(s) or periodic solution
(s) may exist. However, if a network is completely stable, all
trajectories will be convergent, which means that no periodic
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solutions exist. In most cases, we hope RNNs to be completely
stable.

RNNs dynamics greatly depends on the update model used.
Like other RNNs, MVNRNNs use two update models: synchronous
update mode and asynchronous update mode. The stability con-
dition in synchronous update mode can been found in [14]. Here,
we focus on MVNRNNs' dynamics in asynchronous update mode.
In the seminal paper [9], the stability condition has established
that a discrete-time MVNRNN is convergent if its weight matrix is
Hermitian with nonnegative diagonal entries. Applications related
to this property focus on associative memory design [5,6,9,11]. In
[12], through analyzing the same energy function used in [9], the
authors prove that the energy function for each of the stored
patterns will also take the minimum values. Although much
successful work has been based on [9], an obscure flaw exists in
its original proof. According to our most recent research, an
MVNRNN may not be completely stable if its weight matrix is
Hermitian with zero diagonal entries [15].

Another interesting topic is to study MVN networks with non-
Hermitian matrices. In [13], a threshold complex-valued neural
networks associative memory is proposed for information retrie-
val. The test results show that MVN networks with small asym-
metry in weight matrix can be stable and function as well as
Hermitian one. However, the analytical proof of stability of such
MVN networks is still missing.

In this paper, we deal with MVN networks with non-Hermitian
weights, and present a revised stability condition based on [9,15],
which extends previous results by allowing MVNRNNs to be
completely stable with complex-valued diagonal entries. Regard-
ing asymmetric MVN networks in asynchronous update mode, to
the best of our knowledge, no theoretical stability result has been
reported. Therefore, our work also presents a novel research
approach to study the stability of MVN networks with non-
Hermitian matrices.

The rest of this paper is organized as follows. The architecture
of MVNRNNs is described in Section 2. Section 3 is the theoretical
analysis. Simulations are presented in Section 4. Conclusions are
given in Section 5.

2. Multi-valued recurrent neural networks

The MVN model is based on the activation function defined as
complex-signum operation (see Fig. 1). For a specified number of
values K, called the resolution factor, and an arbitrary complex

number u, the complex-signum function is defined as follows:

CSIGNðuÞ9

z0; 0rargðuÞoφ0

z1; φ0rargðuÞo2φ0

⋮
zK�1; ðK�1Þφ0rargðuÞoKφ0

8>>>><
>>>>:

;

where φ0 is a phase quantum delimited by K : φ0 ¼ 2π=K , and z is
the corresponding Kth root of unity: z¼ eiφ0 . Then, the output state
of each neuron is represented by a complex number from the
set fz0; z1;…; zK�1g. Thus the network state s(k) at k-th itera-
tion number, is a complex-valued vector of n components sðkÞ ¼
½s1ðkÞ; s2ðkÞ;…; snðkÞ�T . For simplicity, in this paper, we use σð�Þ
instead of CSIGNð�Þ.

Each input Imðkþ1Þ of the mth neuron is dependent upon the
network state s(k) through synaptic weights wij:

Imðkþ1Þ ¼
Xn
j ¼ 1

wmjsjðkÞþhm;

where hm is a bias, W ¼ ðwijÞn�n is a complex-valued matrix, each
of its elements wmj denotes the synaptic weights and represents
the strength of the synaptic connection from neuronm to neuron j.
Here, we set hm¼0 for simplicity. The output of the m-th neuron is
centered within respective K sectors shown in Fig. 1, and we have

smðkþ1Þ ¼ σðImðkþ1Þ � z1=2Þ ð1Þ

where z1=2 ¼ eiðφ0=2Þ.

3. New stability condition for MVNRNNs

First, we provide preliminaries used in the following to estab-
lish the theory.

For any cAC, we denote

cn ¼ ðcÞT ;

where c is the conjugate of c.

Definition 1. A vector s† is called an equilibrium point (fixed
point) of network (1), if each element s†m in s† satisfies

s†m ¼ σ z1=2 �
Xn
j ¼ 1

wmjs
†
j

0
@

1
A:

Clearly, for s†, it holds that

s† ¼ σðWQs†Þ;

where Q ¼ diagðz1=2; z1=2;…; z1=2Þ.
Denote by Ω the set of equilibrium points of the network (1).

Definition 2. The network (1) is said to be completely convergent
(completely stable), if each trajectory s(k) satisfies

distðsðkÞ;ΩÞ9min
xn AΩ

JsðkÞ�s† J-0

as k-þ1.

Theorem 1. For a complex-valued matrix W, if W can be presented
as W ¼W 0 þD, where W 0 is a Hermitian matrix with zero diagonal
entries (w0

ii ¼ 0 and w0
ij ¼wij ¼wn

ji), D is a diagonal matrix with
diagonal elements dii ¼wiia0 and argðdiiÞA ½0;φ0=2Þ [
ð2π�φ0=2;2πÞ for all i; jAf1;2;…;ng, then the network (1) is
completely convergent.Fig. 1. Complex signum function CSIGN (case shown for K ¼ 6).
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