
Computational cost improvement of neural network models in black
box nonlinear system identification

Hector M. Romero Ugalde a,n, Jean-Claude Carmona b, Juan Reyes-Reyes c,
Victor M. Alvarado c, Juan Mantilla a

a Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, LTSI, and INSERM, U1099, 35042 Rennes, France
b Laboratoire des Sciences de l'Information et des Systemes, UMR CNRS 7296, ENSAM, 13100 Aix en Provence, France
c Centro Nacional de Investigación y Desarrollo Tecnológico, CENIDET, 62490 Cuernavaca, Mor., Mexico

a r t i c l e i n f o

Article history:
Received 5 May 2014
Received in revised form
23 March 2015
Accepted 10 April 2015
Communicated by W. Yu
Available online 20 April 2015

Keywords:
Non-linear system identification
Black box
Neural networks
Computational cost reduction
Estimation quality

a b s t r a c t

Models play an important role in many engineering fields. Therefore, the goal in system identification is
to find the good balance between the accuracy, complexity and computational cost of such identification
models. In a previous work (Romero-Ugalde et al., 2013 [1]), we focused on the topic of providing
balanced accuracy/complexity models by proposing a dedicated neural network design and a model
complexity reduction approach. In this paper, we focus on the reduction of the computational cost
required to achieve these balanced models. More precisely, the improvement of the preceding method
presented here leads to a significantly computational cost reduction of the neural network training
phase. Even if this reduction is achieved by a convenient choice of the activation functions and the initial
conditions of the synaptic weights, the proposed architecture leads to a wide range of models among the
most encountered in the literature assuring the interest of such a method. To validate the proposed
approach, two different systems are identified. The first one corresponds to the unavoidable Wiener–
Hammerstein system proposed in SYSID2009 as a benchmark. The second system is a flexible robot arm.
Results show the interest of the proposed reduction methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

A model is a mathematic representation of a real system which
can be constructed according to two ways or a combination of
them [2]. An approach is based on the physical mechanisms that
govern the system's behavior. The models thus achieved are
adequate approximations of the real process [3]. But, in many
cases, involving complex nonlinear systems, it is very difficult or
impossible to derive dynamic models based on all the physical
processes involved [4–6]. On the contrary, black box system
identification techniques use general mathematical approximation
functions to describe the systems input/output relations. One of
the most important advantages of these approaches is the limited
physical insights required to develop the model [7], but as a trade-
off, these techniques imply the use of model structures that are as
flexible as possible. Often, this flexibility leads to a high number of
parameters [8].

Neural networks are suitable for modeling complex nonlinear
systems when we consider the plant as a black-box [9–13]. How-
ever, it is well known that they require a large number of neurons to
deal with complex systems [14]. Numerous neurons favor a better
approximation but lead to a more complex model [15,16], and
higher computational cost. In engineering applications, such as
inverse control, the adaptive controllers have the same complexity
as the reference models [17–20]. If low order reference models are
used, the number of parameters to be computed will be rather
small [21]. To address this problem many works tried to derive
balanced accuracy, complexity and computational cost models.

Let us present some works which tend to find the best trade-off
between the model complexity and approximation accuracy by
finding the “optimal” number of neurons. Trial and error is one of
these techniques. Based on this approach many authors [7,22,23]
proposed models with a good “quality level”. In the sequel, we
shall denote for greatest convenience, “quality” as the balance
between accuracy and complexity of the model. Although this
procedure is laborious and it may not lead to the “best compro-
mise” between the model complexity and the approximation
accuracy [7,24]. Pruning based techniques have been successfully
used for structural optimization [25–27]. In this approach [28,29],

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.04.022
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: hector@cenidet.edu.mx (H.M. Romero Ugalde).

Neurocomputing 166 (2015) 96–108

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.04.022
http://dx.doi.org/10.1016/j.neucom.2015.04.022
http://dx.doi.org/10.1016/j.neucom.2015.04.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.022&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.022&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.022&domain=pdf
mailto:hector@cenidet.edu.mx
http://dx.doi.org/10.1016/j.neucom.2015.04.022


besides optimizing the number of neurons, the connections
between the neurons are also optimized. More recently, other
evolutionary techniques have been employed in order to derive
“optimal” structures, for example, genetic algorithms (GAs) in
[14,30,24], dissimilation particle swarm optimization (PSO) in
[31], genetic programming (GP) in [4], a combination of GA and
singular value architectural recombination (SVAR) in [32]. As the
pruning approach, the previously outlined techniques, based on
the evolution of the neural network, have been successfully
applied for structural optimization. They share, however, the
disadvantage of excessive time consumption needed to find the
most convenient number of neurons, since training is required
each time the neural network is restructured [11]. Moreover, to
solve the problem of finding the best trade-off between model
complexity and model accuracy, a rather subjective criterion is
always used to decide whether the evolution of the neural
network is appropriate and sufficient. Other techniques trying to
solve the same problem are based on the design of the neural
network. In [33] a novel time-delay recurrent neural network
(TDRNN) is proposed to generate a simple structure. In [1] a neural
network design and a model reduction approach are proposed in
order to generate balanced accuracy/complexity models [13]. In
[34] a neural network using a competitive scheme is proposed in
order to provide an effective method with less network complex-
ity. In [35] the selection of an appropriate FLANN (Functional Link
Artificial Neural Network) structure as the backbone of the model
offers low complexity by means of a single layer ANN structure. In
[36] a pipeline bilinear recurrent neural network (PBLRNN) is
proposed in order to reduce both the model and computational
complexities of a bilinear recurrent neural network (BLRNN).

Now, let us present some works devoted to improve the
balance between the accuracy and the computational cost of the
model. In the sequel, we shall denote “price” as the computational
cost to generate it [3], for convenience. This can be achieved by the
implementation of an efficient learning algorithm or by a con-
venient choice of the model structure. Different learning algo-
rithms can be applied in order to improve the accuracy and reduce
the computational burden. In [37] a Kalman filter-based algorithm
with faster convergence is proposed, although this algorithm is
more complex than the gradient based algorithms, a decoupling
technique is used to decrease the computational burden. Rubio
and Pacheco [38] propose a combination of clustering, gradient
and Kalman filter algorithms leading to a quick and efficient
approach for modeling. A Bounding Ellipsoid algorithm is pro-
posed in [39] for high computational efficiency and fast conver-
gence. Extreme learning machine (ELM), which consists in
randomly choosing the hidden weights and analytically determin-
ing the output weights, is proposed in [40] to reduce the
computational cost required to train single layer neural netwo-
rks (SLFN). An improved simultaneous perturbation stochastic
approximation (SPSA) algorithm [41] yields an improved model
in terms of time of convergence and a smaller identification error.
In [42] a combination of GAs and Levenberg-Marquardt (LM)
algorithms takes advantage of the global search of GA and the
estimation ability of LM to improve the accuracy and reduce the
computation time. Subudhi et al. [43] propose two Memetic
Algorithms (MA), combining evolutionary algorithms (i.e. GA and
differential evolution (DE), which are global search methods) with
a backpropagation (BP) learning algorithm. These algorithms have
faster convergence in comparison with only evolutionary compu-
tation and avoid the possibility of local minima normally existing
in the gradient algorithms. This result is extended in [44] where
the PSO is combined with BP too. Following the same idea, an
opposition based differential evolution (ODE) algorithm combined
with LM is used by Subudhi et al. [11] for training the feedforward
neural network. The results obtained in the previous works are

interesting owing to its convergence properties. However, since the
improvements are achieved by the manipulation of the learning
algorithms, the accuracy, the complexity and the price of the model
are still affected by the complexity of the neural network structure. In
[45,36] the improvements of the computational cost and/or the
approximation accuracy are based on the choice of a convenient
model structure, that is, by the design of the neural network.

With the conviction that the improvement of the quality and
price of a model is linked to a suitable neural network design, we
decided to tackle the problem as follows: firstly, by using the
neural network design and the model reduction approach pro-
posed in [1], and secondly by proposing a computational cost
reduction approach. Combining these two approaches, we propose
a black box system identification method which yields to accurate
models with a small number of parameters at a low price. As
presented in [1], the model complexity reduction approach is
developed in two steps: the first step consists in training a three-
layers neural network chosen to tolerate an initial large number of
neurons. In a second step, the three-layers architecture is trans-
formed into a two-layer representation with a significant reduced
number of neurons retaining the approximation accuracy of the
previous three-layers model. The main contribution of this paper
consists in the improvement of the first step of the model
reduction approach, that is, the computational cost required to
train the complex three layers neural network in order to sig-
nificantly reduce it. Even if it depends on the particular selection
of two factors: (a) the activation functions in each layer and (b) the
initial conditions of the synaptic weights, the reader shall notice
that the proposed architecture nevertheless remains sufficiently
general to provide a wide range of useful model types [13] with a
good quality at a low price. These model types are currently used
for model-based control techniques [10,46–49,21]. The learning
algorithm used to optimize the synaptic weights is a classical
steepest descent algorithm with a back propagation configuration.

The paper is organized as follows: Section 2 is devoted to
describe the new neural network structure which allows us to
investigate the balance among complexity, Section 3 the theorem
and corollary on which our model complexity reduction approach
and our computational complexity reduction approach are based
are given. In Section 4, the paper discusses the results of the
identification of a benchmark system and a robot arm. Subse-
quently conclusions and perspectives are given in Section 5.

2. Neural network design

As mentioned above the neural network design proposed in [1]
is presented in this section. Fig. 1 shows a three layers neural
network with 2� nn neurons in the input layer, 2 neurons in the
hidden layer and 1 neuron in the output layer (2nn–2–1 neural
network). Notice that the number of neurons in the hidden layer is
fixed and the number of neurons in the first layer (nn neurons
used to process the regressors input vector and nn neurons used to
process the regressors output vector) is chosen by the user. After
the training phase, this particular configuration allows us to
reduce the 2nn–2–1 neural network into the 2–1 neural network
shown in Fig. 2, and moreover this architecture allows us to reduce
the computational cost required during the training phase into the
one required to train the 2–2–1 architecture shown in Fig. 3. As we
shall see, even if this structure is somehow particular, by different
combinations of activation functions, the proposed architecture
allows us to generate easily the classical models presented in [47].
The reader shall notice that this architecture remains sufficiently
general, from a user point of view. The mathematical representa-
tion of the proposed neural network architecture is given by the

H.M. Romero Ugalde et al. / Neurocomputing 166 (2015) 96–108 97



Download English Version:

https://daneshyari.com/en/article/411848

Download Persian Version:

https://daneshyari.com/article/411848

Daneshyari.com

https://daneshyari.com/en/article/411848
https://daneshyari.com/article/411848
https://daneshyari.com

