
Extreme learning machine with parallel layer perceptrons

L.D. Tavares a,n, R.R. Saldanha a, D.A.G. Vieira b

a Graduate Program in Electrical Engineering – Federal University of Minas Gerais – Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
b ENACOM–Handcrafted Technologies – Rua Professor José Vieira de Mendonça, 770, Belo Horizonte Technology Park (BH-TEC), Belo Horizonte, MG, Brazil

a r t i c l e i n f o

Article history:
Received 13 December 2014
Received in revised form
26 February 2015
Accepted 2 April 2015
Communicated by G.-B. Huang
Available online 20 April 2015

Keywords:
Parallel layer perceptrons
Extreme learning machine
Structural risk minimization
Least square estimate

a b s t r a c t

This paper proposes using the Parallel Layer Perceptron (PLP) network, instead of the Single Layer
Feedforward neural network (SLFN) in the Extreme Learning Machine (ELM) framework. Differently
from the SLFNs which consider cascade layers, the PLP is designed to accomplish also parallel layers,
being the SLFN its particular case. This paper explores a particular PLP configuration which considers a
nonlinear layer in parallel with a linear layer. For n inputs and m nonlinear neurons, it provides ðnþ1Þm
linear parameters, while the SLFN would have only m linear parameters (one for each hidden neuron).
Since the ELM is based on adjusting only the linear parameters using the least squares estimate (LSE), the
PLP network provides more freedom for the proper adjustment. Results from 12 regression and
6 classification problems are presented considering the training and test errors, the linear vector norm
and the system condition number. They point out that the PLP-ELM framework is more efficient than the
SLFN-ELM approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Neural networks are mathematical models inspired by the brain
functioning which can be applied to a wide range of complex
problems, such as nonlinear function approximation, classification,
pattern recognition and time-series forecasting. It is well known that a
Single-Layer Feedforward Neural (SLFN) network is able to approx-
imate any continuous nonlinear function. This property was verified in
1984 by Cybenco [1] and Funahashi [2], and, more recently, Huang
and Babri [3] demonstrated its learning upper bounds. However, the
SFLN training time was its major bottleneck since most algorithms
were based on gradient descent methods (or similar), such as the
backpropagation [4].

In order to tackle this bottleneck, the Extreme Learning Machine
(ELM) approach is gaining researchers attention since the pioneer
Huang et al.' work [5–7]. The ELM is an SLFN training method that
simplifies the training processes. The SLFN-ELM differs from the
traditional neural networks training methods by analytically deter-
mining the linear parameters by means of linear least squares est-
imate (LSE) solutions.

In this sense, the SFLN-ELM may be interpreted as a linear system
problem in the form Hβ¼ Yd, where H is its hidden layer, Yd is the
desired output vector and β are the linear parameters [6]. Classical

SFLN-ELM approaches do not adjust the nonlinear hidden layer
parameters.

There are several advantages in the SLFN-ELM approach, which
can be highlighted: it considers the minimum norm of the output
layer weights, the training is extremely fast (when compared to the
other conventional gradient descent learning algorithms), it requires
fewer parameter settings (the SLFN-ELM only adjust the output
weights), and it presents a good generalization performance [7].

Several studies were, and are still performed, about SLFN-ELMs.
Output weights regularization (relative to the error or other criteria)
and multi-objective approaches were studied in [8,9]. The determina-
tion of the hidden layer neurons number (which can also be cons-
idered a multi-objective problem) was examined in many studies, as
in [10–16], however, it remains an open problem. Although the SLFN-
ELM initializes the hidden layer with random weights, some studies
indicate other initialization methods, such as [17,18]. SLFN-ELM uses
LSE solutions to determine the output layer weights, however, some
evolutionary strategies have been successfully applied, such as [19–
23]. Kernel-based architectures (similar to Support Vector Machines –
SVM) were also experimented in the papers [24–28] and fuzzy-like
systems in [29]. Although originally ELM is a single layer network, the
use of multiple layers was discussed in [30]. Some others SLFN-ELM
theoretical issues, for instance, the feasibility and generalization
performance, are discussed in [31,32].

Many applications have employed SLFN-ELM, for instance: fast obj-
ect recognition and image classification [33–36]; credit risk evaluation
[37], health [38], big data classification [39], use of priori knowledge
[40], recommendation systems [41], and many others. Theoretical and
practical trends related to ELMs can be found in [42].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.04.018
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: tavares@dcc.ufmg.br (L.D. Tavares),

rodney@cpdee.ufmg.br (R.R. Saldanha).

Neurocomputing 166 (2015) 164–171

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.04.018
http://dx.doi.org/10.1016/j.neucom.2015.04.018
http://dx.doi.org/10.1016/j.neucom.2015.04.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.018&domain=pdf
mailto:tavares@dcc.ufmg.br
mailto:rodney@cpdee.ufmg.br
http://dx.doi.org/10.1016/j.neucom.2015.04.018


As discussed in [43], the neural network training process is,
naturally, a multi-objective problem where it wants to balance the
empirical risk and complexity. Thus, the SLFN-ELM training
method performs the empirical risk minimization, by solving the
JHβ�Yd J2 problem, and minimizing the output weights norm
JβJ2. Therefore, it maps the minimal empirical risk extreme point
such that the output weights norm is minimized. As presented in
[44] the weights norm is more important for generalization than
the network size, reducing the structural risk [45].

It is possible to observe that the norm of JβJ2 is strongly
influenced by the H matrix composition and its properties. An ill-
conditioned H matrix will certainly lead to worse results of JβJ2
and the Hβ¼ Yd system will become ill-formed, as a whole.
Reflecting on these characteristics, some questions arise (i) Is it
possible to modify the hidden layer structure in order to benefit
JβJ2? (ii) Is it possible to keep, in this modified structure, a well-
conditioned hidden layer space?

In 2003, Caminhas et al. proposed a machine learning where the
model output is computed in parallel layers, called Parallel Layer
Perceptron (PLP) [46]. The PLP is based on parallel characteristics of
Adaptive-Network-based Fuzzy Inference System (ANFIS) [47], and
had shown excellent results in terms of generalization ability and
training speed, even using traditional learning methods based on
gradients or hybrid algorithms. Another important feature presented
by the PLP model is that it builds a well-conditioned hidden layer and
keeps under control the norm of the linear weight parameters natu-
rally [43,48]. The PLP has been used in many problems, such as
cirurgical hand–eyes coordination [49], ground penetrating radar
inverse problems [50–53], noise filtering [54], among others. Differ-
ently from the SLFN, which has only one linear parameter for each
hidden neuron, the PLP can have as much as desired by the user. This
paper explores a simple linear parallel layer which has ðnþ1Þm free
linear parameters per neuron, where n is the number of inputs and m
is the number of neurons per parallel layer.

This work aims at using the PLP architecture in conjunction with
the ELM training method, forming the Parallel Layer Perceptron-
Extreme Learning Machine (PLP-ELM). It is expected to build a parallel
learning machine which has the good characteristics of both models:
good generalization, high speed, and low model complexity.

The rest of the paper is organized as follows: Section 2 details the
proposed PLP-ELM mathematical model and Section 3 describes its
training method. The performance evaluation and comparisons with
ELM and other models are presented in Section 4. The PLP-ELM has
presented better results in most of the 18 tested data sets, considering
the training and test errors, as well as the linear vector norm and
nonlinear matrix condition number. Finally, the Section 5 presents the
conclusions and some future works.

2. Parallel Layer Perceptron Extreme Learning Machine
mathematical model

The Parallel Later Perceptron output, Yt, considering the input
xt and m hidden perceptron per layer is computed as [46,48]

Yt ¼ β
Xm
j ¼ 1

γ ajt
� �

ϕ bjt
� �� �0

@
1
A ð1Þ

where ajt and bjt are

ajt ¼
Xnþ1

i ¼ 1

pjixit ð2Þ

bjt ¼
Xnþ1

i ¼ 1

vjixit ð3Þ

and βð�Þ, γð�Þ and ϕð�Þ are activation functions (hyperbolic tangent,

Gaussian, linear, etc.), pji and vji are components of P and V
weights matrices, xit is the ith input for tth sample, x0t is the
perceptron bias and Yt is the tth position of Y output vector. The Yt
dimension depends only on the β function.

Fig. 1 shows the PLP-ELM architecture and how the layers are
arranged in parallel form.

Just as the traditional SLFNs, all weights may be adjusted during
the training phase, however, some distinctions between SLFN and PLP
must be highlighted. Firstly, in SLFN approach the input–output
mapping is made using a function of functions and in the PLP
approach this is done by applying the product of functions (although
the PLP topology also allows function of functions arrangement).
Moreover, the PLP topology simplifies the implementation in parallel
machines or clusters.

As a particular case of Eq. (1), assume that the activation
functions βð�Þ and γð�Þ are linear. In this case, the network output
Yt is computed as

Yt ¼
Xm
j ¼ 1

ajtϕ bjt
� �� � ð4Þ

Replacing Eqs. (2) and (3) in (4)

Yt ¼
Xm
j ¼ 1

Xnþ1

i ¼ 1

pjixit

 !
ϕ

Xnþ1

i ¼ 1

vjixit

 !" #
ð5Þ

The particular case described in Eq. (4) has some desirable
characteristics. The error surface in relation to pji, which is the
linear parameter, is a quadratic structure, hence a least squares
estimate solution can be easily used.

The number of linear parameters in the PLP configuration is nm
higher than in the case of cascade single layer perceptrons. This fea-
ture gives more flexibility to the least-squares, as will be demon-
strated in the experiments.

3. Proposed PLP-ELM training method

The PLP-ELM training method is based on the adjustment of only
the linear terms of Eq. (5), using the least squares estimate (LSE)
solution. This is possible once the output Yt is a linear function of
parameters pjk. The nonlinear parameters are initialized randomly and
there is no need to adjust it during the training process.

Consider ℓk ¼ pji, where k¼ nðj�1Þþ i, where j¼ 1;…;m and
i¼ 0;…;nþ1 thus ℓ is the transformation of the matrix P into a
column vector, as

ℓ¼ ½p11…p1ðnþ1Þp21…p2ðnþ1Þph1…phðnþ1Þ�0 ð6Þ

Fig. 1. Parallel Layer Perceptron Extreme Learning Machine architecture.

L.D. Tavares et al. / Neurocomputing 166 (2015) 164–171 165



Download	English	Version:

https://daneshyari.com/en/article/411854

Download	Persian	Version:

https://daneshyari.com/article/411854

Daneshyari.com

https://daneshyari.com/en/article/411854
https://daneshyari.com/article/411854
https://daneshyari.com/

