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a b s t r a c t

This paper studies finite-time synchronization of hybrid coupled networks. There is only one transmittal
delay in the delayed coupling. The fact is that in the signal transmission process, the time delay affects
only the variable that is being transmitted from one system to another, so assume that there is only one
single time-varying delay coupling is more consistent with the reality. At the same time, the internal
delay and coupling delay are time-varying and different. Based on the Lyapunov stability theory, a
feedback controller is designed for achieving synchronization between two coupled networks with time-
varying delays in finite time. Finally, simulation examples are given to illustrate the theoretical analysis.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Chaos synchronization [1,2] has attracted considerable attention
due to its theoretical importance and practical applications in
various fields such as secure communication and automatic control.
Since the concept for constructing synchronization of coupled
chaotic systems was proposed in 1990 [3], various types of control
method have been used in the synchronization problems of chaotic
systems, such as feedback control [4], back-stepping control [5],
adaptive control [6,7], and pinning control [8].

Although there have been many literatures to discuss the synchro-
nization of coupled chaotic systems, most of the existing synchroniza-
tion algorithms are asymptotic synchronization algorithms [9-11]. An
increased interest has been devoted to study finite-time control for
synchronization of chaotic systems [12-14]. Compared to the asymp-
totically convergent algorithms, the finite-time convergence algo-
rithms demonstrate not only faster convergence rates, but also
better disturbance rejection properties and robustness against uncer-
tainties [15-17]. Therefore, a number of researchers have studied the
finite-time control for chaotic systems and obtained some interesting
results. In [18], finite-time stability and stabilization of time-delay
systems are considered. Yang et al. [19] focuses on the problem of
finite-time synchronization of complex networks with nonidentical
discontinuous nodes. In [20], the paper proposes an approach of finite-
time synchronization to identify the topological structure and

unknown parameters simultaneously for under general complex
networks.

Considering time delay is ubiquitous in nature [21,22], it is
important to study the effect of time delay in synchronization of
coupled systems. In practice, time delay involves two parts. One is
internal delay because the delay occurs inside the systems, the other
is caused by the exchange of information between systems, called
coupling delay. Despite some literatures to be found on synchroniza-
tion of coupled networks with time delay, many of them have been
focused the case in which all of the time delay are the same and the
coupling term is given by Dðxjðt�τðtÞÞ�xiðt�τðtÞÞÞ [23-25]. Of
course, it is unreasonable. Firstly, internal delay and coupling delay
may not be the same because of different occurrence mechanism.
Secondly, in the signal transmission process, the time delay affects
only the variable that is being transmitted from one system to
another. In other words, if there is a connection from node j to node i.
The information received by node i is with time delay. Therefore, the
coupling is inevitably recognized as Dðxjðt�τðtÞÞ�xiðtÞÞ. Refs. [26,27]
propose coupled networks with one single time-varying delay
coupling and illustrate that this model is more consistent with the
reality. Moreover, this general model includes delayed Hopfield
neural networks, delayed cellular neural networks and some famous
chaotic systems, such as Lorenz system and Chua's systems [6,28].

Our main contribution in this paper is to address finite-time
synchronization between two coupled networks in a general model.
In this model, we not only consider different internal delay and
coupling delay, but also study the coupled systems with one single
time-varying delay coupling. Motivated by the above discussions,
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the model is more realistic and the complexity increases. On this
basis to consider the finite time control for the two coupled chaotic
systems will be more challenging and more application value. Based
on the Lyapunov stability theory, a feedback controller is designed
to guarantee the synchronization in finite time. At the same time,
we also discuss that the synchronization manifold of coupled
networks can be reached in finite time by using this method. Two
examples are given to illustrate our theoretical results.

The rest of the paper is organized as follows. In Section 2, some
preliminaries are briefly given. In Section 3, main results are
obtained for finite-time synchronization based on Lyapunov func-
tional and feedback control. In Section 4, simulation results aiming
at substantiating the theoretical analysis are presented. This paper
is concluded in Section 5.

Notations: Rn denotes the n-dimensional Euclidean space, Rn�m is
the set of n�m real matrices. The superscript T denotes matrix
transposition and the notation AZB (respectively A4B) where A
and B are symmetric matrices, means that A�B is positive semi-
definite (respectively positive definite). JxJ ¼ ðxTxÞ1=2, where xARn.
signð�Þ stands for the sign function.

2. Preliminaries and problem formulation

Consider the following time delay coupled network consisting
of N nodes, in which each node is an n-dimensional dynamical
systems:

_xiðtÞ ¼ �CxiðtÞþAf ðxiðtÞÞþBf ðxiðt�τ1ðtÞÞÞþ
XN

j ¼ 1;ja i

GijDðxjðtÞ�xiðtÞÞ

þ
XN

j ¼ 1;ja i

GijDτðxjðt�τ2ðtÞÞ�xiðtÞÞ; i¼ 1;…;N ð1Þ

where xiðtÞ ¼ ðxi1ðtÞ;…; xinðtÞÞT ARn is the state variable of the
ith node; C, A and B are constant matrices; f ðxiðtÞÞ ¼ ðf 1
ðxi1ðtÞÞ;…; f nðxinðtÞÞÞ is the activation function of the neurons; τ1ðtÞ
and τ2ðtÞ are internal delay and coupling delay, respectively;
D¼ diagfd1;…; dng and Dτ ¼ diagfdτ1;…;dτng are the positive semi-
definite inner coupling matrices between the connected nodes i and
j at time t and t�τ2ðtÞ, respectively; G¼ ðGijÞN�N is the configuration
matrix that is irreducible and satisfies the following conditions:

Gij ¼ GjiZ0; ia j; Gii ¼ �
XN

j ¼ 1;ja i

Gij ð2Þ

Gij40 if there is a connection between node i and node j and Gij ¼ 0
otherwise. The degree of node i is equal to

PN
j ¼ 1;ja i Gij.

We refer to model (1) as the drive complex dynamical network,
and the response complex network can be rewritten as follows:

_yiðtÞ ¼ �CyiðtÞþAf ðyiðtÞÞþBf ðyiðt�τ1ðtÞÞÞþ
XN

j ¼ 1;ja i

GijDðyjðtÞ�yiðtÞÞ

þ
XN

j ¼ 1;ja i

GijDτðyjðt�τ2ðtÞÞ�yiðtÞÞþuiðtÞ; i¼ 1;…;N ð3Þ

where yiðtÞ ¼ ðyi1ðtÞ;…; yinðtÞÞT ARn denotes the response state
vector associated with the ith node.

Assume Cð½�τ;0�;RnÞ be a Banach space of continuous funct-
ions mapping the interval ½�τ;0� into Rn with the norm JϕJ ¼
sup� τrθr0 JϕðθÞJ , where τ is the upper bound of τ1ðtÞ and τ2ðtÞ. For
the functional differential equations (1) and (2), their initial conditions
are given by xiðtÞ ¼ϕiðtÞACð½�τ;0�;RnÞ and yiðtÞ ¼φiðtÞA Cð½�τ;
0�;RnÞ. We always assume that Eq. (1) has a unique solution with
respect to initial condition, the same as Eq. (2).

Define the synchronization errors eiðtÞ ¼ yiðtÞ�xiðtÞ, i¼ 1;…;N.
Based on condition (2), we have the following error dynamical

system:

_eiðtÞ ¼ �CeiðtÞþAðf ðyiðtÞÞ� f ðxiðtÞÞÞþBðf ðyiðt�τ1ðtÞÞÞ� f ðxiðt�τ1ðtÞÞÞÞ

þ
XN
j ¼ 1

GijDejðtÞþ
XN
j ¼ 1

GijDτejðt�τ2ðtÞÞ�GiiDτðeiðt�τ2ðtÞÞ

�eiðtÞÞþuiðtÞ; i¼ 1;…;N ð4Þ
For starting simplification, one has the following fundamental

assumptions.

Assumption 1. There exists constant L40, for any x; yARn, such
that

J f ðyÞ� f ðxÞJ2rLJy�xJ2

Assumption 2. 0r _τ1ðtÞrh1o1, 0r _τ2ðtÞrh2o1, where h1 and
h2 are constants.

To end this section, we introduce the following lemmas which is
useful in deriving sufficient conditions of finite-time synchronization.

Lemma 1 (Bhat and Bernstein [29]). Consider system _x ¼ f ðxÞ;
f ð0Þ ¼ 0; xARn, where f ð�Þ : Rn-Rn is a continuous vector function.
Suppose there exists a C1 positive definite and proper function V :

Rn-R and real numbers μ40 and ηAð0;1Þ such that _V þμVη is
negative semi-definite. Then the origin is a globally finite-time stable
equilibrium of system _x ¼ f ðxÞ. Moreover, the settling time Tr
V1�ηð0Þ=ð1�ηÞμ.

Lemma 2 (Bovd et al. [30]). Given any real matrices A, B, Σ of
appropriate dimensions and a scalar s40, such that 0oΣ ¼ΣT .
Then the following inequality holds:

ATBþBTArsATΣAþs�1BTΣ�1B

Lemma 3. Given any real matrices G¼ ðGijÞN�N, A¼ ðaijÞn�N,
B¼ ðbijÞn�N and diagonal matrices Γ ¼ diagfγ1;…; γng, G0 ¼ diag
fG11;…;GNNg. Denote ai; ~a

T
j are the ith column vector and jth row

vector of A, respectively; bi, ~b
T
j are the ith column vector and jth row

vector of B, respectively. Then the following equations hold:

XN
i ¼ 1

aTi
XN
j ¼ 1

GijΓbj ¼
Xn
i ¼ 1

~aT
i γiG ~bi ð5Þ

XN
i ¼ 1

aTi GiiΓbi ¼
Xn
i ¼ 1

~aT
i γiG

0 ~bi ð6Þ

Proof. First, discuss the left side of Eq. (5):

XN
i ¼ 1

aTi
XN
j ¼ 1

GijΓbj ¼
XN
i ¼ 1

ða1i;…; aniÞ
XN
j ¼ 1

GijΓ

b1j
⋯
bnj

0
B@

1
CA

¼
XN
i ¼ 1

ða1i;…; aniÞ
Gi1r1b11þ⋯þGiNr1b1N

⋯
Gi1rnbn1þ⋯þGiNrnbnN

0
B@

1
CA

¼
Xn
i ¼ 1

XN
i0 ¼ 1

XN
j0 ¼ 1

Gi0j0 riaii0bij0 ð7Þ

Then, we have

Xn
i ¼ 1

~aT
i γiG ~bi ¼

Xn
i ¼ 1

ðai1;…; aiNÞγiG
bi1
⋯
biN

0
B@

1
CA

¼
XN
i ¼ 1

ðai1;…; aiNÞ
G11ribi1þ⋯þG1NribiN

⋯
Gn1ribi1þ⋯þGnNribiN

0
B@

1
CA

D. Li, J. Cao / Neurocomputing 166 (2015) 265–270266



Download English Version:

https://daneshyari.com/en/article/411863

Download Persian Version:

https://daneshyari.com/article/411863

Daneshyari.com

https://daneshyari.com/en/article/411863
https://daneshyari.com/article/411863
https://daneshyari.com

