
Tree-based compact hashing for approximate nearest neighbor search

Guangdong Hou, Runpeng Cui, Zheng Pan, Changshui Zhang n

State Key Lab of Intelligent Technologies and Systems, Tsinghua National Laboratory for Information Science and Technology (TNList), Department of
Automation, Tsinghua University, China

a r t i c l e i n f o

Article history:
Received 5 June 2014
Received in revised form
11 March 2015
Accepted 6 April 2015
Communicated by Deng Cai
Available online 16 April 2015

Keywords:
Hashing
Binary codes
Approximate nearest neighbor search

a b s t r a c t

Hashing methods map high-dimensional data onto compact binary codes for efficient retrieval. These
methods focus on preserving the data similarity in Hamming distance between the mapped hash codes.
In this paper we propose a novel hashing method motivated by maximizing the probability of data with
the same hash code being true neighbors, under the constraint of code compactness. This method is
data-dependent and generates quite compact hash codes. The key idea is to use a collection of tree-
structured hyperplanes to satisfy the compactness constraint, as well as to maximize the lower bound of
the objective function. We compare our method with some widely used hashing methods on real
datasets of different sizes. The experimental results illustrate the superior performance of our method.
The performance of this method is further effectively improved by a multi-table extension.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the development of information technology, it is now
possible to use huge datasets for challenging machine learning
tasks. Therefore, to accelerate search in large-scale and high-
dimensional datasets, fast approximate nearest-neighbor (ANN)
search becomes more important and necessary.

Hashing method is such an ANN method and demonstrates
enormous potential in many applications with large-scale datasets,
such as scene recognition [1], pose estimation [2], data fusion [3],
image retrieval and classification [4–8], and multi-class object
detection [9].

The goal of hashing is to translate high-dimensional data into
compact binary codes, so that the hash codes of similar data will
have either short Hamming distance or high collision probability.
Since Hamming distance between two binary codes can be
calculated quite efficiently via XOR operation, alternatively, a
lookup table can be easily constructed on binary codes, hashing
enables efficient retrieval.

For a high-dimensional input, xARd, hashing methods map it

onto a binary hash code HðxÞAf�1;1gK , where K{d and
HðxÞ ¼ ½h1ðxÞ;…;hK ðxÞ�. Each hash bit is the output of a hashing
function hkðxÞ. Each possible code value is corresponding to a
collection of data, and named a “hash bucket”, the data mapped to
the same bucket are “collision data”.

According to whether the dataset is considered when construct-
ing hashing functions, hashing methods can be briefly categorized
into two types: data-independent ones and data-dependent ones.

The data-independent methods construct hashing functions in
a randommanner. It requires less calculation in construction stage,
but is usually not efficient when the code length is short.

For example, LSH (Locality Sensitive Hashing) [10] and E2-LSH
[11] use random linear projections as hashing functions. The k-th bit
is determined by signðwT

kxþbkÞ, where wk and bk are sampled from
a p-stable distribution and a uniform distribution, respectively. It has
good asymptotic properties to guarantee the collision probability of
similar data, but is usually not quite efficient in practical applications
since the bits are usually redundant. Refs. [12,13] expand this
approach to its kernel version. SKLSH (Shift-Invariant Kernels
Locality-Sensitive Hashing) [14] finds another random way to
approximate the original distance with increasing hash bits. Its
hashing function is given by 1

2½1þsignð cos ðwT
kxþbkÞþtkÞ�, where

the parameters wk, bk and tk are sampled independently from their
specified probability distributions.

Correspondingly, data-dependent methods create hashing
functions by learning from the dataset. The structure of the dataset
helps to produce more efficient codes.

ITQ (Iterative Quantization) [15] minimizes the quantization loss
when using sign functions in hashing. It takes orthogonal basis, e.g.,
basis from PCA, as the initialization of linear hashing functions. Then
an EM mechanism is used to seek a rotation matrix for the basis,
which helps to minimize the quantization loss.

SH (Spectral Hashing) [16] tries to find hash codes whose
Hamming distances are consistent with the original Gaussian kernel
distances in some degree. Constraints on the codes compactness are
concerned in this method. With more assumptions on the data

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.04.012
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: zcs@mail.tsinghua.edu.cn (C. Zhang).

Neurocomputing 166 (2015) 271–281

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.04.012
http://dx.doi.org/10.1016/j.neucom.2015.04.012
http://dx.doi.org/10.1016/j.neucom.2015.04.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.012&domain=pdf
mailto:zcs@mail.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.neucom.2015.04.012


distribution, they convert the problem into an eigenvalue decom-
position problem and obtain hashing functions with a simple form.

Semantic hashing [17] uses restricted Boltzmann machines to
learn the hash codes. CGHash [18] learns the hashing functions on
the basis of proximity comparison information. SSH (Semi-Super-
vised Hashing) [19,20] uses pairwise similarity and dissimilarity
information to improve the learning of linear hashing functions. Ref.
[21] learns the hashing functions sequentially, thus the deviation
caused by the pervious hashing functions can be compensated by
the subsequent ones. CH (Complementary Hashing) [22,6] maps
data into multiple hash tables to balance the precision and recall in
different ways. They illustrate the benefit of multiple hash tables.

What makes a good hash code? First, it should be efficient for
responding the query, i.e., finding the approximate nearest neighbors;
second, it should be compact, which makes more efficient retrieval
possible and reduces storage space; finally, it should be easy to encode
new samples. These standards make the hashingmethods challenging.

In this paper, we propose a novel hashing method and its
multi-table extension. This method generates quite compact hash
codes by evenly splitting the dataset. Our contributions can be
summarized as follows:

(1) A compact hashing method. It aims to maximize the
probability that collision data are true neighbors. Compared with
the widely used hashing methods, our method generates more
compact binary codes, and gives superior retrieval performance in
our experiments.

(2) A multiple tables paradigm. The compact hashing method
can be extended into the multi-table version, which achieves a
better precision–recall performance than a single table at the price
of a slight loss in code compactness.

(3) The characteristics of several hashing methods are compared.
The experiments and theoretical analysis are given to reveal that on
what kind of dataset the proposed method can be more suitable.

The rest of the paper is organized as follows: the proposed method
is detailed in Section 2, including the motivation and methodology.
The different behaviors with other methods are also discussed.
Section 3 describes the multiple tables version of the method. The
experimental results are shown and analyzed in Section 4.

2. Tree-based compact hashing

In this section, we introduce our method to learn compact and
efficient hash codes. We start with the constraints on code compact-
ness. In our method, we take such constraints as hard constraints
and use a collection of tree-structured functions to meet them.
Besides, instead of trying to preserve the original data distance, we
focus on making the data with the same hash code closer.

2.1. Objective function

An ideal hash code should be as compact as possible for more
efficient retrieval and more storage space saving. Many hashing
methods formulate the objective function under the code com-
pactness constraint.

To make hash codes compact, the bits generated by one
hashing function on the whole dataset are expected to maximize
information entropy reduction of the data, and be uncorrelated
with those of other hashing functions. For linear projection-based
hashing function hkðxÞ ¼ signðwT

kxÞ, the optimization on compact-
ness can be expressed by the formulation (1) [15,19]:

max
wk

XK
k ¼ 1

varðsignðXwkÞÞ

s:t:
1
N
BTB¼ I; ð1Þ

where BAf�1;1gN�K denotes the hash codes for a dataset X with
N data points. The (i,k)-th element of B is given by hkðxiÞ. It is noted
that the maximum variance for (1) means exactly half of the
dataset have hkðxiÞ ¼ 1, and the other half are �1 s [15,19]. It
implies that BT1¼ 0, which is used as another compactness
constraint in [16].

These constraints force the codes to be compact. From the view
of information theory, the codes are compact means having a large
entropy with the same number of bits, and the codes generated
under these constraints have the maximum entropy, as we stated
in Proposition 1.

Proposition 1. For a dataset XARN�d and a scheme H with K
hashing functions, if the generated hash codes BAf�1;1gN�K satisfy
the compactness constraints BT1¼ 0 and 1

NB
TB¼ I, then the codes

have the maximum entropy.

Proof. Let s denote a bucket, Xs ¼ fxjHðxÞ ¼ sg. So ps ¼ PðHðxÞ
¼ sÞ ¼ jXs j

N . Since BT1¼ 0 and 1
NB

TB¼ I, for any s we have

ps ¼ ∏
K

k ¼ 1
PðhkðxÞ ¼ sðkÞÞ ¼ ∏

K

k ¼ 1

1
2
¼ 2�K :

Consider the function f ðxÞ ¼ �x log 2 x, xA ð0;1Þ. So � f ðxÞ is
convex. For the hashing scheme H, we have

EntropyðHÞ ¼ �
X2K �1

s ¼ 0

ps log 2 psr�2K
P2K �1

s ¼ 0 ps
2K

 !
log 2

P2K �1
s ¼ 0 ps
2K

 !

¼ log 2 2
K ¼ K:

If and only if ps ¼ 2�K ; s¼ 0;…;2K �1, the codes have the
maximum entropy. □

Unfortunately, the maximum variance solution of (1) may not be
reachable for some forms of hashing functions, such as the above
linear projection-based hashing functions, and it is also intractable
to solve since this problem is non-convexity and non-differentiable.
Thus in previous works, it is usually relaxed into (2) [15,19]:

max
W

1
N
trðWTXTXWÞ

s:t: WTW ¼ I; ð2Þ
where WARd�K and the k-th column of W is a projection vector wk

which determines the corresponding hashing function by
hkðxÞ ¼ signðwT

kxÞ. This relaxation makes the problem tractable. It
replaces the bit-orthogonality with the orthogonality of the basis of
the original data space. If the data have a uniform distribution in
every direction given by wk, the two are equivalent. However, in
most cases, this assumption does not hold and the relaxation may
lead to a quite different solution from that of the original problem.

To address this problem, we try to optimize our objective function
under the original compactness constraints [16]. We use a new
optimizing objective and formulate our objective function as (3):

max
H

Pð‖xi�xj‖oRjHðxiÞ ¼HðxjÞÞ

s:t: BT1¼ 0
1
N
BTB¼ I: ð3Þ

This optimization objective is the probability of collision data
being within a specified distance R, which can be the distance
threshold to define two neighbors. It is meaningful for the hash
retrieval, especially when using a lookup table, since only the
collision data (or those within quite small Hamming radius) are
checked in this case.

For the most compact K-bits hash codes, i.e., the codes satisfy the
constraints in (3), the total number of buckets is 2K. They provide a

G. Hou et al. / Neurocomputing 166 (2015) 271–281272



Download English Version:

https://daneshyari.com/en/article/411864

Download Persian Version:

https://daneshyari.com/article/411864

Daneshyari.com

https://daneshyari.com/en/article/411864
https://daneshyari.com/article/411864
https://daneshyari.com

