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a b s t r a c t

Shape memory alloys (SMAs) are smart metallic materials, which have the ability to recover their shape
when heated, even under high-applied load and large inelastic deformation. This characteristic helps
SMA provide an interesting alternative to replace conventional actuator. This paper proposes an adaptive
online displacement control of an SMA actuator that is created by combining an adaptive feed-forward
neural networks ( AFNNs) model and a PID feedback controller to increase the accuracy and to eliminate
the steady state error in displacement position control process of the SMA actuator. The AFNN model,
which is created by combining a multi-layers perceptron neural networks (MLPNNs) structure and an
auto regressive with exogenous input (ARX) model, is used for modeling and identifying the hysteresis
inverse model of the SMA actuator. Then, a new hybrid differential evolution (HDE) algorithm, which is a
combination between a traditional differential evolution algorithm and a back-propagation algorithm, is
used to optimally generate the best weights of the AFNN model. Due to the offline identification, the
proposed adaptive online displacement control can learn the hysteresis behavior of the SMA actuator in
advance and then provide online control signal efficiently. Consequently, the displacement of SMA
actuator is controlled robustly and more precisely.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Shape memory alloys (SMA) are smart metallic materials,
which have the ability to recover their original shape when
heated, even under high-applied load and large inelastic deforma-
tion. A shape memory effect that is a highly nonlinear hysteresis
phenomenon, occurs due to temperature and stress in the crystal
structure between two different phases called austenite and
martensite. Austenite is a crystal structure change at high tem-
perature phase and martensite is a crystal structure change at low
temperature phase. This phenomenon helps SMA become a
potential choice of the actuator that provides an interesting
alternative to the conventional actuator. Although the shape
memory alloys have been recently used in many applications such
as biomedical engineering [1], aerospace applications [2,3], auto-
motive applications [4], robotic applications [5,6] and other fields,
the hysteresis behavior of SMA makes it a challenge in modeling
and obtaining high control performance.

In order to model and simulate the hysteresis behavior, some
mathematical models have been investigated. Some research works

such as the Jiles–Atherton model of ferromagnetic hysteresis [7],
Preisach operator [8–10], Krasnosel'skii–Pokrovskii (KP) operator
[11], and Prandtl–Ishlinskii (PI) operator [12] used physical-based
model for developing different hysteresis behavior. However, all
proposed models comprised many parameters which were not con-
stant and changed depending on the working conditions. To overcome
this drawback, identification based on experimental input–output data
of the hysteresis behavior is an ongoing research.

Recently, the neural networks (NN) have been considered as a
promising approach for identifying the nonlinear system. Studies
in [13,14] indicated that the neural networks could be used
effectively in identifying and controlling the nonlinear system.
Thees studies proposed static and dynamic back-propagation (BP)
algorithm to optimally generate the weights of neural networks
(BP-NN) and to adjust the parameters. Kardan et al. [15] intro-
duced a proposed recursive neural network structure for modeling
the hysteresis behavior of an SMA spring. The experimental input–
output data that was composed of the applied voltage and spring
force, was used for an estimation and validation process. Wang
et al. [16] introduced the proposed Jordan-plus-Elman NARX
neural network model to estimate the hysteresis behavior of an
ultra-thin SMA wire. Summarily, back-propagation algorithm was
a popular algorithm to solve the nonlinear system identification.
However, the back-propagation algorithm easily performs local
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search around the initial values and provides local optimum in
studies [17,18]. To overcome this drawback, many researchers
proposed evolution algorithms (EAs) to optimize the traditional
BP-NN.

Recently, the evolution algorithmsbecame popular for finding
the optimal solution of complex optimization problems. These EAs
provided global optimum due to their capability of exploring the
global solution space without trapping at a local optimum. Like
evolutionary algorithms, differential evolution (DE) algorithm was
considered as a powerful stochastic global optimization technique.
The DE algorithm emerged as a very competitive form of evolu-
tionary computing when the first published article on DE appeared
as a technical report of R. Storn and K. V. Price in 1995 [19]. The DE
algorithm was capable of handling non-differentiable, nonlinear,
and multimodal objective functions. Its simplicity and straightfor-
wardness in implementation, excellent performance, involving
fewer parameters , and low space complexity, made DE as one of
the most powerful tools in the field of optimization. Vesterstrom
et al. [20] evaluated the performance of DE, PSO and EAs on 34
widely used benchmark problems. Karaboga et al. [21] applied the
DE algorithm to the design of digital FIR filters and compared its
performance to the genetic algorithm. The results from these
studies showed that the DE algorithm performed better than the
other algorithms. The DE algorithm had been used to train a neural
network model through optimizing real and constrained integer
weights. Paper [22–28] successfully developed a DE-based trained
neural network. Thus, these papers demonstrated that the DE
algorithm could be effectively used for training neural network
models applied in versatile applications. However, DE has some
drawbacks as all other evolutionary techniques, [29–31]. Firstly, DE
has a good global search ability to obtain the global optimal, but it
is slow at the exploitation of the solution. Secondly, DE has a slow
convergence rate for high-dimensional optimization problems.
Finally, DE has a possibility of stagnation phenomenon that is a
state in which the optimum seeking process stagnates before
finding a globally optimal solution. Due to these drawbacks, the
traditional DE algorithm has a slow convergence rate and slow
precision preventing its application in many areas. To overcome
these drawbacks, the hybrid differential evolution algorithm based
on the advantages of differential evolution and a gradient descent
method has been of interest in the research. Krzysztof et al. [32]
and Lee et al. [33] proposed to train the neural networks based on
combining differential evolution with the gradient descent
method. At each generation, the mutation and recombination
created a new individual. This new individual was adapted by
the gradient descent optimization methods before implementing
the next generation. The experimental results showed that the
hybrid algorithm had better performance and faster convergence
than the differential evolution or other gradient descent methods.

In order to control the nonlinear hysteresis SMA actuator, the
tracking control method has been investigated. In general, the
tracking control can be classified into two main approaches, open-
loop control without output feedback and close-loop control with
output feedback. In some applications, open-loop control is used
because of its simplicity and ease to design the tracking control of
the SMA actuator. For this purpose, the hysteresis inverse model of
the SMA actuator, which is identified for the application of the
feed-forward controller, is used for providing the appropriate

control input for compensating the hysteresis behavior of the
SMA actuator. Song et al. [34] proposed an open-loop control
based on neural network inverse model for the tracking control of
the SMA wire actuator. Rosenbaum et al. [35] proposed an inverse
Preisach model based feed-forward control for accurate control of
an electromagnetic actuator. Gu et al. [36] proposed a modified
Prandtl–Ishlinskii inverse model based on open-loop compensa-
tion control for a piezoceramic actuator. However, the perfor-
mance of the feed-forward controller depends on the accuracy of
the hysteresis inverse model. In addition, if the hysteresis inverse
model of SMA actuator is sensitive to environmental disturbances
then offline identification of hysteresis parameters results in
inaccurate estimation. To improve the tracking error related to
hysteresis inverse model, a combination of feed-forward and
feedback controller is developed. Sayyaadi et al. [37] proposed
the feed-forward feedback controller based on the generalized
Prandtl–Ishlinskii inverse model and a conventional proportional–
integral feedback controller for controlling the tip deflection of a
large deflected flexible beam actuated by an SMA actuator wire.
Song et al. [38] introduced a new approach to control the SMA
actuator using a neural feed-forward controller for reducing the
hysteresis and a sliding mode based feedback controller for
compensating uncertainties. Asua et al. [39] proposed nonlinear
control methods using the hysteresis inverse model inserted in a
proportional integral with an anti-windup control loop. The
hysteresis inverse model was obtained by a linear phase shift
approximation and by training the neural networks.

In this paper, the proposed adaptive online displacement
control of SMA actuator is created by combining an adaptive
feed-forward neural networks (AFNN) model and a PID feedback
controller to increase the accuracy and eliminate the steady state
error in displacement position control process of the SMA actuator.
The AFNN model, which is created by combining the multi-layers
perceptron neural network (MLPNN) structure and auto regressive
with exogenous input (ARX) model, is used for modeling and
identifying the hysteresis inverse model of the SMA actuator.
Hence, the proposed AFNN model possesses a powerful approx-
imating characteristic of the MLPNN model and a strong predictive
characteristic of the ARX model. Then, a new hybrid differential
evolution (HDE) algorithm, which is a combination between a
traditional differential evolution algorithm, and back-propagation
algorithm, is used to optimally generate the best weights of the
AFNN model. Due to the offline identification, the proposed
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Fig. 1. The main stages of the DE algorithm.

Fig. 2. DE mutation scheme in 2-D parametric space.
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