
Robotics and Autonomous Systems 57 (2009) 384–392

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Using probabilistic reasoning over time to self-recognize
Kevin Gold ∗, Brian Scassellati
Department of Computer Science, Yale University, 51 Prospect Street, New Haven, CT, USA

a r t i c l e i n f o

Article history:
Received 15 May 2008
Accepted 30 July 2008
Available online 13 August 2008

Keywords:
Self-recognition
Robot
Mirror test
Dynamic Bayesian model
Animacy
Contingency

a b s t r a c t

Using the probabilistic methods outlined in this paper, a robot can learn to recognize its own motor-
controlled body parts, or their mirror reflections, without prior knowledge of their appearance. For each
item in its visual field, the robot calculates the likelihoods of each of three dynamic Bayesian models,
corresponding to the categories of ‘‘self’’, ‘‘animate other’’, or ‘‘inanimate’’. Each model fully incorporates
the object’s entire motion history and the robot’s whole motor history in constant update time, via the
forward algorithm. The parameters for each model are learned in an unsupervised fashion as the robot
experiments with its arm over a period of four minutes. The robot demonstrated robust recognition of
its mirror image, while classifying the nearby experimenter as ‘‘animate other’’, across 20 experiments.
Adversarial experiments, in which a subject mirrored the robot’s motion showed that as long as the robot
had seen the subject move for as little as 5 s before mirroring, the evidence was ‘‘remembered’’ across a
full minute of mimicry.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents a simple algorithm by which a robot can
learn over time whether an item in its visual field is controllable
by its motors, and thus a part of itself. Because the algorithm does
not rely on a model of appearance, or even kinematics, it would
apply equallywell if the robotwere damaged,moved into different
lighting conditions, or otherwise changed its appearance. Perhaps
more compelling is the fact that themethod applies equally well to
the robot’s own unreflected parts and its reflection in the mirror.
Much has been made of mirror self-recognition in animals and

humans, and some psychologists are quite willing to interpret
mirror self-recognition as evidence for a sense of self [13,6]. Theuse
of a mirror to assay intelligence is an attractive idea, because the
dividing line seems to so clearly segregate the intelligent species
from the not-so-intelligent: among animal species, only apes [7,
8], dolphins [18], and elephants [16] are known to learn in an
unsupervised manner that their mirror reflections are themselves,
while monkeys treat their reflections as conspecifics [12]. Human
children typically begin to pass the ‘‘mirror test’’ around the
age of two [1], which is about the same time they begin to
use personal pronouns [3]. However, just as Deep Blue’s chess-
playing does not necessarily imply well-rounded intelligence,
mirror self-recognition in a robot cannot necessarily be interpreted
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as evidence formore general cognitive abilities. EvenGrayWalter’s
mechanical tortoises of the 1950s displayed different behavior in
front of a mirror than not, but this was a simple consequence of
the robot’s alternating attraction and repulsion from its own light
source [21]. Furthermore, the evidence assigning any importance
to mirror self-recognition even among animals and humans is at
best suggestive. We shall therefore avoid the hyperbolic claims of,
e.g., [20] that our robot is ‘‘conscious’’. We claim only that it can
learn to reliably distinguish its own moving parts from those of
others; any language used in this paper that suggests any kind of
agency on the part of the robot should be taken to be only offered
as analogy.
As an implementation of robotic self-recognition based on

motion or timing, themethodhas several advantages over previous
work. The most crucial is that unlike [14,11], the present method
takes into account the whole observation history of an object,
rather than only reacting to its current motion or state. This
makes the algorithm more resistant to noise, more consistent
over time, and able to remember that objects temporarily moving
simultaneously with the robot are not actually itself. The current
method is also more transparent than previous methods such
as [20], which used a recurrent neural network to produce a
different behavior in front of a mirror than not. The present
method produces explicit probabilities for each classification,
using probabilities and calculations that themselves have intuitive
semantics, and thus simplifies the task of interpreting what
the robot is actually calculating. Finally, other researchers have
described methods that simply produce different behavior in front
of a mirror, rather than any representation that is accessible for
further probabilistic reasoning [20,11,21]. Because our method
produces probabilities with clearly defined semantics, the results
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can be more easily integrated with the robot’s other mechanisms
for probabilistic reasoning.
The algorithm compares the likelihoods of three dynamic

Bayesianmodels at everymoment in time. Onemodel corresponds
to the hypothesis that the robot’s own motors generated an
object’s motion; the second model corresponds to the hypothesis
that something else generated that motion; and a third model
detects irregular motion, such as that caused by noise or dropped
inanimate objects. Given the history of visual evidence forwhether
an object has moved from frame to frame, and the kinesthetic
evidence for whether the robot’s own motors were moving at a
particular frame, it is possible to calculate a probability for each of
thesemodels for a particular object, and update these probabilities
in constant time. If the robot can consistently control something’s
motion, then that thing is considered to belong to the robot’s own
body.
Other methods of robotic self-recognition have not relied on

motion, and thus have come with their own advantages and
drawbacks. A robot can, for instance, touch itself and compare its
visual feedback to its haptic feedback, thereby creating a visual-
somatosensory map [23]. This method obviously requires the
recognized areas to possess touch sensors and be reachable, but as
an advantage over the presentmethod, the recognized areaswould
not need to bemotor-controlled. Another method is to statistically
extract parts of the visual scene that remain invariant in different
environments [22]. This does notworkwell for eithermoving parts
or mirror images, but could detect parts of the robot that move
with the camera. A third method is to find salient patches of the
visual scene, cluster them over time by their color histograms, and
determinewhich clusters’ positions share highmutual information
with the robot’s kinematic model [4]. This method creates and
relies on expectations for the appearance and position of the
robot’s parts, whichmay work less well for identifying parts under
transformations such as mirror reflection or changed lighting
conditions, but could be useful in bootstrapping a forward model
for reaching.
Section 2 describes the underlying mathematical model that

produces the classification probabilities. Section 3 describes how
the model was implemented on the humanoid upper-torso robot,
Nico (Fig. 1). Section 4 describes the results of experiments
in which the robot learned the parameters of its self model
by watching its own unreflected arm for four minutes, and
then classified its mirror image and the experimenter. Section 5
describes experiments in which a human adversary mirrors the
robot’s motion. We conclude with some speculations about the
significance of the ‘‘mirror test’’ as a test of intelligence, some
hypotheses about how mirror self-recognition might function in
thewild, and some critiques and further extensions of ourmethod.
(Sections 2–4 appeared in abbreviated form in a proceedings paper
for the Cognitive Science Society [10], while the experiments in
Section 5, this introduction, and the conclusions are new to this
paper.)

2. Mathematical background and models

Our method compares three models for every object in the
robot’s visual field to determine whether it is the robot itself,
someone else, or neither. The use of Bayesian networks allows
the robot to calculate at each time t the likelihoods λνt , λ

σ
t ,

and λωt , corresponding to the likelihoods of the evidence given
the inanimate model, the self model, and the ‘‘animate other’’
model, respectively. Normalizing these likelihoods then gives the
probability that eachmodel is correct, given the evidence.We shall
first discuss how the models calculate their probabilities under
fixed parameters, then explain how the parameters themselves are
adjusted in real-time.

Fig. 1. Nico is an upper-torso humanoid robot with the arm and head kinematics
of a one-year-old.

The ‘‘inanimate’’ model is the simplest, aswe assume inanimate
objects only appear to have motion due to sensor noise or when
they are dropped. If we characterize the occurrence of either
of these events as the event r , then this model is characterized
by a single parameter: the probability P(r) that random motion
is detected at an arbitrary time t . Observations of this kind of
motion over time are assumed to be independent, such that the
overall likelihood λνt can be calculated by simply multiplying the
likelihoods at each time step of the observed motion. The robot’s
second model for an object is the ‘‘self’’ model, in which the
motor actions of the robot generate the object’s observed motion.
The model is characterized by two probabilities: the conditional
probability P(m|φ) of observing motion given that the robot’s
motors are moving, and the conditional probability P(m|¬φ) of
observing motion given that the robot’s motors are not moving.
(Henceforth,m and ¬m shall be the observations of motion or not
for motion event M , and φ and ¬φ shall serve similarly for motor
eventΦ . Note that these probabilities need not sum to 1.)
Fig. 3 shows the graphical model corresponding to the robot’s

‘‘self’’ model. Each circle corresponds to an observation of either
the robot’s own motor action (top circles), or the observed motion
of the object in question (bottom circles), with time t increasing
from left to right. The circles are all shaded to indicate that these
event outcomes are all known to the robot. The arrows depict
conditional dependence; informally, this corresponds to a notion
of causality. Thus, the robot’s motor action at time t causes the
perception of motion at time t .
To determine the likelihood of this model for a given object,

the robot must calculate the probability that its sequence of motor
actions would generate the observed motion for the object. The
relevant calculation at each time step is the probability P(Mt |Φt)
of motor event Φt generating motion observation Mt . These
probabilities, calculated at each time step, can then be simply
multiplied together to get the overall likelihood of the evidence,
because the motion observations are conditionally independent
given the robot’s motor actions.1

1 Though the graphical depiction of the self model includes the conditional
dependence relations of the robot’s activity from one time step to the next, these
transitions do not actually matter for the calculation of the likelihood of the
evidence. Only the likelihood of the motion observations conditioned on motor
activity is being calculated, not the joint likelihood of motor activity and motion.
We include the motor dependence arrows here to better illustrate the point that
the ‘‘animate other’’ model is exactly the ‘‘self’’ model, with only a change in what
evidence is assumed to be available; but we could as easily omit them, as we do
in [10].
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