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• New sampling-based approximation for mutual information in mobile robotics.
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a b s t r a c t

We address the problem of controlling a mobile robot to explore a partially known environment. The
robot’s objective is the maximization of the amount of information collected about the environment. We
formulate the problem as a partially observable Markov decision process (POMDP) with an information-
theoretic objective function, and solve it applying forward simulation algorithms with an open-loop
approximation. We present a new sample-based approximation for mutual information useful in mobile
robotics. The approximation can be seamlessly integrated with forward simulation planning algorithms.
We investigate the usefulness of POMDP based planning for exploration, and to alleviate some of its
weaknesses propose a combination with frontier based exploration. Experimental results in simulated
and real environments show that, depending on the environment, applying POMDP based planning for
exploration can improve performance over frontier exploration.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Autonomous robotic agents performing tasks such as monitor-
ing, surveillance or exploration must be able to plan their future
information-gathering actions. Real-world environments are typ-
ically partially observable and stochastic, and planning in them
requires reasoning over uncertain outcomes in the presence of sen-
sor noise. The true state of the system is hidden, and knowledge
about the state is represented by a belief state, a probability density
function (pdf) over the true state. The utility of actions is measured
by an appropriate reward function, and the agent’s objective is to
maximize the sum of expected rewards over a specified horizon of
time. Such planning problems are instances of partially observable
Markov decision processes [1], or POMDPs.

The solution of a POMDP is a control policy, i.e. a mapping from
belief states to actions. To find policies for information-gathering
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and exploration tasks, several authors have proposed applying
quantities such as entropy or mutual information as reward
functions of the POMDP [2–6]. Although finding optimal policies
for POMDPs is computationally hard (PSPACE-complete; [7]),
they remain an attractive modelling choice due to the ability
to simultaneously handle uncertainties in the robot’s action and
sensing outcomes.

In this article,we address the problemof finding control policies
for robotic exploration problems formulated as POMDPs.We apply
forward simulation algorithms for finding a solution to an open
loop approximation of a POMDP. This approach allows general
belief-dependent reward functions and with suitable choice of
algorithm can avoid discretization of the continuous planning
space. We derive a sampling-based approximation for mutual
information that can be applied in conjunction with forward
simulation based planning, and describe a method for efficiently
drawing the required samples.We provide an empirical evaluation
of our proposed approach in simulated and real-world exploration
experiments.

This article is organized as follows. Section 2 provides a survey
of related work and discusses the relation of our contribution to
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the state-of-the-art. In Section 3, we formulate exploration as a
POMDP, and discuss possible solution methods. Section 4 reviews
two forward simulation based methods for non-myopic planning
in POMDPs. Section 5 introduces the sample-based approximation
of mutual information suitable for robotic exploration problems,
and describes a method for efficiently drawing the required sam-
ples. Section 6 describes the results of simulation experiments, and
Section 7 presents the software architecture for implementation of
our approach and reports the results of real-world exploration tri-
als. Finally, Section 8 provides concluding remarks.

2. Related work

Mobile robots typically collect information on both their
internal state and the state of the environment they are interacting
with. In simultaneous localization and mapping (SLAM) (see
Durrant-Whyte and Bailey [8] for a review) the robot must
jointly estimate both its pose (internal state) and the map of
the environment based on its actions and observations. Robots’
information-gathering actions consist of actions that affect their
pose, and hence the area covered by their sensors, and actions
explicitly selecting between sensors or their operating modes. In
the active SLAM problem [9], the robot’s actions are selected to
obtain best estimates on the pose and the map. Thus, the active
SLAM problem is an exploration or sensor selection problem. The
goal is to maximize information on both the robot pose and the
map.

Techniques to control mobile robot exploration may be cate-
gorized e.g. by whether they apply heuristic rules or formal deci-
sion theory for selection of exploration targets. Applying heuristic
rules for guiding exploration spans frontier-based approaches [10],
or some next-best-view approaches such as [11]. Juliá et al. [12]
classify explorationmethods according to the levels of multi-robot
coordination and integration with SLAM algorithms. They con-
clude that SLAM-integrated exploration performs best with re-
gard to quality of map information. Their results also agree with
Amigoni [13], Amigoni and Caglioti [14], who found decision the-
oretic criteria combining both utility of exploration and its cost
(e.g. time or distance) to be preferable if both extent of the explored
area and exploration timewere optimized. In the following, we re-
view in more detail some single-robot exploration techniques that
employ decision theoretic criteria to guide the exploration process.

Information on the location of the robot and environment fea-
tures, or landmarks, may be modelled by a multivariate Gaussian
distribution. The SLAM problem can then be solved for example
by applying the Extended Kalman Filter. Exploration with such
feature-basedmapswas studied by Sim and Roy [15] who describe
an A-optimal exploration method, i.e. they minimize the trace of
the state covariance matrix. They discretize the location of the
robot to a grid and plan an informative trajectory in open loop as
a sequence of discrete positions via a breadth-first search. A simi-
lar objective function was used by [16], adopting a model predic-
tive control (MPC) approach for optimization over multiple time
steps. Discretization of the action space was also applied by [17],
who applied reinforcement learning to learn parameterized robot
trajectories for exploration. A somewhat complementary approach
was adopted in [18], where a set of candidate exploration targets
were evaluated based on an utility function designed to balance
exploration of unknown areas and seeing known landmarks to
help maintain good localization information. However, an explicit
information-theoretic quantification of the information gain was
avoided.

Martinez-Cantin et al. [19] relaxed assumptions made in earlier
work, such as discretization of the action space and the myopic
optimization horizon. They applied aMonte Carlo search algorithm
in policy space with a Gaussian process approximation of the

objective function. The policies to evaluate were selected by
minimizing the average mean square error of the state estimate
consisting of robot and landmark locations.

A belief space planning approach investigated by [20,21]
addressed many of the limitations of earlier studies. A planner
architecture consisting of an estimation layer and a decision layer
combinedwith amodel predictive control strategy for non-myopic
planning was applied, assuming a Gaussian belief over robot and
landmark poses. Discretizationwas avoided by applying a gradient
descent method for computing optimal actions. Possible future
measurements were treated as random variables, relaxing the
assumption of maximum likelihood measurements. Exploration
was considered in the sense that the objective function included
an A-optimality criterion for state covariance.

Another body of work in exploration employs metric map
representations such as occupancy grids [22]. Bourgault et al. [23]
combined occupancy grid mapping with feature-based SLAM and
used mutual information as the reward function. A discretized
action space was applied with myopic optimization.

Rao–Blackwellized particle filtering (RBPF) is often applied
in state-of-the-art SLAM filters for occupancy grid maps [24].
Each particle represents a map and a robot trajectory hypothesis.
Stachniss et al. [2] studied myopic exploration in RBPF SLAM
by discretizing the action space to a set of possible waypoints
and then evaluating the approximate expected information gain
when travelling to the waypoints by sampling. This work was
later expanded upon [25,9] by considering alternative measures of
uncertainty of the SLAM solution. These approaches consider both
exploration of new areas and maintaining the consistency of the
particle filter approximation.
Contribution. We present a new approximation for mutual infor-
mation that is useful in mobile robotics exploration problems. The
approximation can be easily integrated with forward simulation
planning methods, and avoids computing full SLAM filter updates
during the planning phase. In contrast to e.g. [19–21], we do not as-
sume a Gaussian belief state. We propose and empirically evaluate
in simulated and real-world domains a exploration method com-
bining strengths of decision-theoretic POMDP based exploration
and classical frontier based exploration. In all cases,we concentrate
on non-myopic planning instead of the greedy one-stepmaximiza-
tion of utility.

3. Exploration as a POMDP

Consider a robot exploring a partially observable environment.
Let s ∈ S denote the hidden state of the system, comprising the
state of the robot and the state of the environment. At each decision
epoch in the setT = {0, 1, . . . ,H−1},H ∈ N∪{∞}, whereH is the
horizon of the problem, the robot selects a control action u ∈ U.
Consequently, the state at the next decision epoch is determined
by a transition according to a Markovian state transition model
T(s′, s, u), giving the conditional probability of transitioning to
s′ ∈ S from s ∈ S when action u ∈ U is executed. After the
state transition, the robot obtains information regarding the state
in the form of an observation. The observation is modelled by a
probabilistic model O(z ′, s′, u) giving the conditional probability
of perceiving observation z ′ ∈ Z in state s′ ∈ S after action u ∈ U
was executed. As the robot’s knowledge of the true system state is
incomplete, it is represented by a belief state b ∈ B, a probability
density function (pdf) over the state space S. The set B, containing
all pdfs over S, is called the belief space.

As the robot executes control actions and perceives observa-
tions, its belief state is tracked by Bayesian filtering. Given a belief
state b ∈ B and an action u ∈ U, the predicted belief state bu is
computed by

bu(s′) =

s∈S

T(s′, s, u)b(s)ds. (1)
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