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HIGHLIGHTS

The control laws that verify distance constraints are also furnished.

The controllability analysis of two 3D Dubins vehicles constrained to maintain constant distance is proposed.
Necessary and sufficient conditions for the existence of a limited control to steer the system between any two configurations are provided.

The results are relevant for aerial or underwater vehicles that are e.g. physically constrained to a payload to be deployed.

ARTICLE INFO ABSTRACT

Article history:

Received 17 September 2015
Accepted 30 May 2016
Available online 16 June 2016

Keywords:
Controllability

Vehicle formation

3D planning
Nonholonomic vehicles

In this paper we consider the controllability problem for a system consisting of a pair of Dubins vehicles
moving in a 3D space (i.e. pair of 3D-Dubins vehicles) while maintaining constant distance. Necessary and
sufficient conditions for the existence of a limited control effort to steer the system between any two
configurations are provided. The proposed controllability analysis and the developed motion planning
algorithm are a step toward the solution of planning problems for example in case the robots are
physically constrained to a payload to be deployed. Moreover, results obtained in this paper are relevant
in order to solve formation control problems for multiple robots as aerial or underwater vehicles, which
move in 3D spaces. Simulation results highlight the sufficiency of the obtained conditions showing that
even from critical configurations an admissible control can be determined.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Motion planning algorithms have been actively studied in the
literature and there are several methods based e.g. on visibility
graphs, potential field techniques or randomized sampling (see [1]
and references therein). Several challenges may arise including
issues related to nonholonomic and dynamic constraints, modeling
uncertainty, noisy models, partial sensory data, and real-time
computation.

Motion planning becomes particularly difficult and interesting
(see e.g. [2]) when physical robots have to perform tasks in a
truly 3D environment avoiding static or dynamic obstacles such
as in disaster sites, underwater and aerial environments. In such
scenario, multi-robot systems can perform tasks more efficiently
than a single robot or can accomplish tasks not executable by
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a single one. Moreover, multi-robot systems have advantages,
e.g. providing flexibility to the task execution by exploiting
distributed sensing and actuation. Also in nature, several types
of animals, such as insects, birds, or fishes, aggregate together,
moving en masse or migrating in some directions, also known
as swarm behavior. The term shoaling or schooling is used to
refer specifically to swarm behavior in fishes which derives many
benefits including also the increased hydrodynamic efficiency
(cf. [3]).

The cooperation and coordination of multi-robot systems
(i.e. formation control) has been object of considerable research
efforts (see [4] for a detailed review and references therein). For-
mation control studies the problem of controlling multiple robots
with different kinematics and sensory equipment so that they
can maintain some given configuration constraints (e.g. distances)
while moving as a whole group [5-7]. Many approaches of forma-
tion control have been proposed, such as behavior-based meth-
ods [8], leader-follower strategies [9,10] and virtual structure
approaches [11]. Various kinds of nonholonomic vehicles have
been considered, such as ground vehicles (e.g. in [12]), aircraft
(e.g.in [13]) and underwater vehicles (e.g. in [ 14]).
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In order to solve challenging problems as motion planning
algorithms and formation control as well as to plan optimal
trajectories, it is important to analyze and prove the controllability
of the system. A system is completely controllable if, for every pair
of points gq; and g, in the configuration space, there exists a control
that steers the system from q; to g, [15,16].

Unlike other approaches, the analysis of a tight constraint on
the distance to be maintained is herein considered. There are
several application scenarios in which the motion of the robots
can be physically constrained due to a load of large dimensions
to be deployed. For example refer to [17,18] or to [19] where a
group of quadrotor rigidly attached to a payload is considered.
Other examples of those type of applications can be found in the
aerospace robotics such as the JPL’s Robot Colonie project where
two rovers must transport a large box [20] and in underwater
cooperative manipulation systems [21].

Besides the applications, the problem has several interesting
theoretical aspects among which the control input set depends
on the system configurations and classical controllability results
cannot be directly applied. Moreover the high dimensional system
is controlled by constrained 3-dimensional controls, and the range
of admissible controls depends on the configuration variables.
The solution of such constrained problems is also crucial for the
solution of optimal control problems in which a minimum safety
distance must be guaranteed during motion. Indeed, the optimal
solution consists also of arcs along which the robot travel at
constant distance, see e.g. [22].

In [23] the controllability of different pairs of identical nonholo-
nomic vehicles (e.g. differential drive and car-like vehicles) moving
in a plane while maintaining a constant distance has been proved.
Results obtained have then been used in order to prove the con-
trollability and design a motion planning algorithm for formations
of planar Dubins vehicles, [13,24].

In this paper our purpose is to extend results of [13] to a sys-
tem consisting of a pair of 3D-Dubins vehicles moving in a 3D space
while maintaining constant distance. Extension to the 3D case is
not straightforward due to a more complex vehicle model and
thus maneuvers between configurations must be accordingly com-
puted. This paper completes our previous conference paper [25]
which furnishes only sufficient conditions for controllability. Here
we provide a more restrictive condition that is proved to be both
necessary and sufficient. Finally, a motion planning algorithm to
drive the considered system between initial and final configura-
tion that verify the necessary and sufficient condition.

The paper is organized as follows. In Section 2 the model of
two three dimensional Dubins vehicles are presented with the
inputs and distance constraints to be verified. In Section 3 the
effects of the controls on the system are evaluated in order to
simplify the controllability analysis performed next. In Section 4
necessary conditions for the system controllability are obtained
in terms of system internal configurations. In Section 5 several
basic movements and associated control laws are obtained. Such
movements are then combined to steer the system between
any two configurations as described in Section 6. The necessary
conditions are thus proven to be also sufficient for controllability if
verified by the initial and final configurations. Finally, simulations
results to highlight the verification of the constraints and the
system’s behavior under the proposed controls is reported in
Section 7.

2. Problem definition

Consider a nonholonomic vehicle moving in a three dimen-
sional space and let (W) = (O0y, Xw, Yy, Z,) be a fixed
reference frame. In (W), the vehicle configuration is ¢{(t) =
(x(0), y(t), z(t), ¢(t), ¥ (1)) where q = (x(t), y(t), z(t)) is the

w

Fig. 1. Asingle 3D-Dubins vehicle. The configuration ¢ of the vehicle is described by
three position variables x, y and z and two angular variable: ¢ is the angle formed
by the vehicle heading and the plane X,, x Y,, and v is the angle formed by the
projection of the vehicle heading on the plane X,, x Y,, and X,, axis. The control
inputs are the forward velocity v = 1 and the angular velocity .

position in (W) of the reference central point in the vehicle, p(t) is
the angle formed by the vehicle heading and the plane X,, x Y, and
¥ (t) is the angle formed by the projection of the vehicle heading
on the plane X,, x Y,, and X,, axis (see Fig. 1).

Given the forward velocity v of the vehicle, the velocity vector
vin (W) isv = (vcosgsiny, vcosgcosy, vsing)'. The
kinematic model of the nonholonomic vehicle is (for the vehicle
model for more details please refer to [26,27])

{“ZV (1)

V=VX®

where w = (, ¢siny, —¢ cos y)T.

In this paper we consider the 3D-Dubins system that is
described by system (1) subject to a constrained control effort
|w| < wpy. Moreover, without loss of generality, we consider
v = 1.In such conditions, a 3D-Dubins generates trajectories with
bounded curvature, as the minimum radius is r = ﬁ

Remark 1. For reader convenience we recall that the classical
Dubins car is basically a unicycle vehicle moving on a plane
with a constant positive forward velocity (usually normalized
to 1) and a bounded angular velocity. The 3D-Dubins car here
introduced is a generalization of the classical one to move in a 3D
space. For detailed discussions on the model, the constraints, the
controllability properties and optimal control results please refer
to [28-30] and references therein.

Consider now the system consisting of a pair of 3D-Dubins
constrained to maintain constant the magnitude D of the distance
vector D joining the centers of the two robots. The system is hence
given by

C:ll =V

Lo 2)
Vi =V X W

\'/2 =V X 0

subject to the constraint of a constant magnitude of vector D =
q, — q; and limited control efforts

@i < oy (3)
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