
Robotics and Autonomous Systems 83 (2016) 214–230

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Planning and execution through variable resolution planning
Moisés Martínez ∗, Fernando Fernández, Daniel Borrajo
Computer Science Department, Universidad Carlos III de Madrid, Avenida de la Universidad, 30, Leganés 28911, Madrid, Spain

h i g h l i g h t s

• A novel technique for planning and execution in dynamic and stochastic environments.
• When planning, the technique removes information far into the future.
• Planning information is abstracted by selecting several predicates.
• Planning and execution performance are improved by computing plans very fast.

a r t i c l e i n f o

Article history:
Received 12 May 2015
Received in revised form
9 December 2015
Accepted 22 April 2016
Available online 11 May 2016

Keywords:
Task planning
Planning and execution
Abstract representation
Cognitive robotics

a b s t r a c t

Generating sequences of actions – plans – for robots using Automated Planning in stochastic and dynamic
environments has been shown to be a difficult task with high computational complexity. These plans are
composed of actions whose execution might fail due to different reasons. In many cases, if the execution
of an action fails, it prevents the execution of some (or all) of the remainder actions in the plan. Therefore,
in most real-world scenarios computing a complete and sound (valid) plan at each (re-)planning step
is not worth the computational resources and time required to generate the plan. This is specially true
given the high probability of plan execution failure. Besides, in many real-world environments, plans
must be generated fast, both at the start of the execution and after every execution failure. In this
paper, we present Variable Resolution Planning which uses Automated Planning to quickly compute a
reasonable (not necessarily sound) plan. Our approach computes an abstract representation – removing
some information from the planning task –which is used once a search depth of k steps has been reached.
Thus, our approach generates a plan where the first k actions are applicable if the domain is stationary
and deterministic, while the rest of the plan might not be necessarily applicable. The advantages of this
approach are that it: is faster than regular full-fledged planning (both in the probabilistic or deterministic
settings); does not spend much time on the far future actions that probably will not be executed, since
in most cases it will need to replan before executing the end of the plan; and takes into account some
information of the far future, as an improvement over pure reactive systems. We present experimental
results on different robotics domains that simulate tasks on stochastic environments.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Automated Planning (AP) is the branch of Artificial Intelligence
that studies the generation of an ordered set of actions – plan –
that allows a system to transit from a given initial state to a state
where a set of goals have been achieved. AP has been successfully
used to solve real world problems such as planning Mars explo-
ration missions [1] or controlling underwater vehicles [2]. Despite
of these examples, the application of AP systems to stochastic and

∗ Corresponding author.
E-mail addresses: moises.martinez@uc3m.es (M. Martínez),

fernando.fernandez@uc3m.es (F. Fernández), dborrajo@ia.uc3m.es (D. Borrajo).

dynamic environments still presents some challenges, mainly be-
cause these scenarios increase the complexity of the planning and
execution process: (i) new information about the environment can
be discovered during action execution, modifying the structure of
the planning task; (ii) actions’ execution can fail which in turn pre-
vents the execution of the rest of the plan; (iii) the execution of the
actions in the plan can generate states from which the rest of the
plan cannot be successfully executed (dead-ends); and (iv) plans
may need to be generated quickly to offer a real time interaction
between the AP system and the environment. For these reasons,
the process of generating a plan of actions can be prohibitively ex-
pensive for this kind of scenarios.

There are two main (extreme) approaches to solve problems
in stochastic and dynamic scenarios: deliberative and reactive. At

http://dx.doi.org/10.1016/j.robot.2016.04.009
0921-8890/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.robot.2016.04.009
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2016.04.009&domain=pdf
mailto:moises.martinez@uc3m.es
mailto:fernando.fernandez@uc3m.es
mailto:dborrajo@ia.uc3m.es
http://dx.doi.org/10.1016/j.robot.2016.04.009


M. Martínez et al. / Robotics and Autonomous Systems 83 (2016) 214–230 215

one extreme, we find deliberative systems which are based on
interleaving AP and execution with full or partial observability.
If we have information about the dynamics of the environment
(failures in the actuators of a robot, the structure of the
terrain, accuracy of sensors), we can define a domain model
with probabilistic information with full observability (such as
in PPDDL [3] or RDDL [4]). Then, one alternative consists on
building conditional plans [5] where plans take into account all
possible outcomes. Another approach consists on generating a set
of policies by solving the problem as a Markov Decision Process
(MDP) [6–8].

But, usually, the dynamics of the environment are not known or
cannot be easily modeled. Then, in turn, we have two alternatives.
First, we can learn the dynamics and then apply the previous
approaches. However, the learning effort is huge except for small
tasks [9]. Another solution, and the most used one, consists of
using a deterministic domain model and replan or repair the
plan when a failure in execution is detected (e.g. the robot is
not in the expected place). When replanning [10], the planner
generates an initial applicable plan and executes it, one action at
a time. If an unexpected state is detected, the system generates
a new plan from scratch. This process is repeated until the
system reaches the problem goals. Therefore, at each planning (re-
planning) step, including the initial one, the system is devoting a
huge computational effort on computing a valid plan (an applicable
plan that achieves the goals), when most of it will not be used.
When repairing a running plan [11–13], the planner generates
an initial applicable plan and executes it. If an unexpected state
is detected, the system generates a new plan by reusing the
plan generated previously and adding/removing some actions. In
general, deliberative systems require a huge computational effort
to generate a complete and sound plan. Depending upon the
dynamics of the environment, most probably the plan will not be
executed fully.

On the other extreme, there are several approaches that solve
problems in stochastic and dynamic scenarios using reactive
techniques. These systems are based in greedily selecting the next
action to be applied according to some knowledge which has
been programmed or learned previously. If the knowledge about
the environment is only used to select the next action, we can
consider a pure reactive system without deliberation, where the
system perceives and generates the next action in a continuous
cycle. Systems based on the Subsumption architecture [14,15]
are built using a control layer set, where different layers are
interconnected with signals. During each execution step, one layer
is chosen depending on the information perceived. Other reactive
approaches are based on building reactive behavioral navigation
controllers using neural networks [16,17] or fuzzy logic [18,19]. In
general, reactive systems require much less computational effort
and are ‘‘mostly’’ blind with respect to the future; they usually
ignore the impact of the selected action on the next actions and
states. Thus, they often get trapped in local minima or dead-ends.

In this paper, we propose Variable Resolution Planning (vrp)
for interleaving planning and execution in stochastic and dynamic
environments. Our research has been inspired by the work of
Zickler and Veloso [20], where a motion planning technique is
used to generate a collision-free trajectory from an initial state
to a goal state. They consider the far future with a different
level of detail, by selectively ignoring the physical interactions
with dynamic objects. Similarly, vrp is based on two main
concepts: (i) most planning effort is devoted to compute a
valid plan head of length k; and (ii) the rest of the plan is
only generated by checking for potential reachability by relaxing
the actions’ model. Actions are simplified by removing some
domain details to decrease the computational effort avoiding dead-
ends. The main advantage of our approach is that it requires

much less search time than traditional planning approaches that
compute a valid complete plan (improving over pure deliberative
approaches), while retaining their capability of reasoning into the
future (improving over pure reactive approaches). In addition, our
technique can be easily parameterized by appropriately setting
a value for k so that its behavior gradually transits from a more
deliberative approach (large values of k) to a more reactive
approach (small values of k). In the extremes, if k = 1, vrp becomes
an almost pure reactive system, while if k = ∞, vrp behaves as a
standard deliberative planner.

This paper is organized as follows: first in Section 2,we formally
define the representation of the planning task in classical planning.
Section 3 presents an overview of vrp. Section 4 introduces the
concept of predicate abstraction and how it can be deployed in
AP. Section 5 describes the algorithms related to vrp. Section 6
presents a description of the planning and execution architecture
used to deploy vrp. Section 7 shows experimental evaluation of vrp
in five different domains. Section 8 presents some works related
with our approach. Finally, Section 9 concludes and introduces
future work.

2. Planning formalization

There are different types of planning tasks defined in the
literature. In this paper, we consider the sequential classical
planning task which is encoded in the propositional fragment
of Planning Domain Description Language (PDDL) 2.2. It includes
advanced features like numeric fluents, ADL conditions, effects and
derived predicates (axioms).

Definition 1 (Planning Task). A planning task can be defined as a
tuple Π = (F , A, I,G), where:

• F is a finite set of grounded literals (also known as facts or
atoms).

• A is a finite set of grounded actions derived from the action
schemes of the domain.

• I ⊆ F is a finite set of grounded predicates that are true in the
initial state.

• G ⊆ F is a finite set of goals.

Any state s is a subset of facts that are true at a given time step.
Each action ai ∈ A can be defined as a tuple ai = (Pre, Add,Del),
where Pre(ai) ⊆ F are the preconditions of the action, Add(ai) ⊆ F
are its add effects, and Del(ai) ⊆ F are the delete effects. Eff (ai) =

Add(ai) ∪ Del(ai) are the effects of the action. Actions can also
have a cost, c(ai) (the default cost is one). An action a is applicable
in si, if Pre(a) ⊆ si. Then, the result of applying an action a in
state si generates a new state that can be defined as: si+1 = (si \

Del(a)) ∪ Add(a). A plan π for a planning task Π is an ordered set
of actions (commonly, a sequence)π = (a1, . . . , an), ∀ai ∈ A, that
transforms the initial state I into a state sn where G ⊆ sn. This plan
π can be executed if the preconditions of each action are satisfied
in the state in which it is applied; i.e. ∀ai ∈ π, Pre(ai) ⊆ si−1 such
that state si results from executing the action ai in the state si−1. s0
is the initial state I . The cost of the solution is the sum of the action
costs.

In PDDL [21], planning tasks are described in terms of objects
of the world (robots, locations, rocks, etc.), predicates which
describe static or dynamic features of these objects or relations
among them (e.g. locations are connected by roads), actions that
manipulate those relations (a robot can move from one location
to another, a package can be grasped by a robot), an initial state
that describes the initial situation before plan execution, and a goal
definition which describes the objectives that must be reached by
the solution plan. Commonly, this information is provided in two
input files: a domain and a problem. The domain file contains a



Download English Version:

https://daneshyari.com/en/article/411916

Download Persian Version:

https://daneshyari.com/article/411916

Daneshyari.com

https://daneshyari.com/en/article/411916
https://daneshyari.com/article/411916
https://daneshyari.com

