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a b s t r a c t

Self-organizing ability is one of themost important requirements ofmodern sensor networks; particularly
for tracking maneuvering targets. Flocking-based approaches are biologically inspired methods that have
recently gained significant attention to address the control and coordination problem in self-organizing
sensor networks. These approaches are exemplified by the two well-known algorithms, namely, the
Flocking and the Semi-Flocking algorithms. Although these two algorithms have demonstrated promising
performance in tracking linear target(s), they have deficiencies in tracking maneuvering targets.

This paper introduces a constrained clustering approach that uses a novel extension of K-means
algorithm to provide better coverage over maneuvering targets. This extension clusters the sensors based
on certain background knowledge, then uses the information about the clusters to improve coverage. The
performances of flocking-based algorithms, both with and without the proposed approach, are examined
in tracking both linear and maneuvering targets. Experimental results demonstrate how constrained
clustering yields better tracking of maneuvering targets, and how applying constraints on the clustering
process improves the quality of clustering and increases the speed of convergence.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Throughout the last decade, mobile sensor networks have
been attracting significant attention for possible use in a wide
range of applications, including environmentalmonitoring, habitat
tracking, military command and control, security, manufacturing
and transportation activities. Mobile surveillance systems are one
of the applications in which sensor networks are well studied and
efficiently used [1–4].

Surveillance applications involve self-organized mobile sen-
sors. Such sensors cooperate and coordinate their activities to de-
tect and track targets and events in a given volume of interest (VOI)
and fuse the collected information to create a complete picture of
the situation of interest. In a surveillance application, targets are
normally classified into two classes based on their motion type:
maneuvering (non-linear) and non-maneuvering (linear). A non-
maneuvering target has a constant velocity. All other targets (those
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with non-constant velocity) are categorized as maneuvering tar-
gets [5].

One key challenge in large-scale surveillance systems is mobil-
ity control and coordination, which deals with the optimal move-
ment of a set of mobile sensors. Maximizing target coverage is one
of the main objectives in mobility control of many surveillance ap-
plications [6]. This problem is evenmore challengingwhen sensors
are dealing with maneuvering targets that change their speed and
direction frequently and suddenly [7,8]. Extensive research has fo-
cused on this problem in recent years [9–12]. The Flocking algo-
rithm [9] is a well-cited example of this research work [6,13–18].
Flocking is a type of group behavior of large numbers of au-
tonomous agents that cooperate and coordinate to reach common
objectives.

Flocks’ self-organizing feature and their ability to benefit
from local communication make them suitable for use in sensor
networks. Flocking [13], Anti-Flocking [15] and Semi-Flocking [6]
are examples of flocking-based algorithms that have been applied
in management of sensors in sensor networks. Although flocking-
based algorithms have demonstrated promising performance in
tracking mobile targets, they are not able to cover maneuvering
targets as well as non-maneuvering ones, particularly when there
is a small flock around a maneuvering target.
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This paper discusses two flocking-based algorithms, namely,
Flocking [13] and Semi-Flocking [6]. The effectiveness of these
two algorithms in tracking maneuvering and non-maneuvering
targets is evaluated. The paper discusses the deficiencies of
both algorithms when it comes to their ability to maintain
robust target coverage over maneuvering targets, then presents
a novel constrained clustering approach that facilitates improved
target coverage performance under complex target maneuvering
conditions.

Constrained clustering is an approach that can be applied in
applications in which some background knowledge about data
sets is available. Traditional clustering approaches make no use of
this information even if it does exist [19]. This prior information
provides increased evidence as towhich instances should or should
not be placed in the same cluster. This information provides
indispensable insight for forming more-precise clusters and/or
increasing the rate of convergence in a clustering algorithm.
In this paper we maintain that cluster precision and clustering
convergence are key requirements for dynamic multi-target
tracking.

The outline of the paper is as follows. Section 2 briefly explains
two flocking-based algorithms (Flocking and Semi-Flocking) for
mobility control of sensors in surveillance applications. Section 3
highlights the drawbacks of flocking-based methods for tracking
maneuvering targets and introduces a constrained clustering based
approach that addresses these drawbacks. Section 4 introduces
the evaluation criteria, the experimental setup, and the simulation
results and analysis. Finally concluding remarks and future
directions are given in Section 5.

2. Flocking-based algorithms

This section discuses Flocking and Semi-Flocking algorithms
as two flocking-based approaches to mobility control of sensors
in surveillance applications. Flocking-based algorithms have
several advantages that make them suitable for use in sensor
management. Distributed problem solving, local communications,
low computation overhead for the sensors, high flexibility and
scalability are just a few examples of the advantages of these
algorithms. The following assumptions have been made in this
paper about the surveillance system and mobile sensors:

• The surveillance system consists of n mobile sensors deployed
in a two-dimensional geographical region with width w and
length l.

• Communication ability: each sensor can communicate with
all its neighboring sensors by exchanging messages through a
communication network.

• Sensing ability: each sensor can sense precise position and
velocity of all the targets that are placed within distance r from
the sensor. Therefore, the sensing range of each sensor is a circle
with radius r around it. Targets that come within this range
are always detected, while targets outside are never detected.
The problem in which the sensors cannot make accurate
measurements is addressed in another paper [20] using
distributed Kalman-Consensus filtering. Therefore in this paper
we assume that sensors can make accurate measurements
avoiding complication.

• Motion ability: each sensor motion is controlled independently
but coordinated with the motion of other sensors. Let qi, pi ∈

R2 denote the position and velocity of sensor i, respectively. The
motion of sensor i is governed by the following equation:
q̇i = pi
ṗi = ui

where ∈ qi, pi, ui R2.

See below for definition of ui.

• The surveillance system consists of m mobile targets (n >
m) randomly entering and leaving the area of interest (AOI).
Let qtj, ptj ∈ R2 denote the position and velocity of target
j respectively. All targets follow the following equation of
motion:
q̇tj = ptj
ṗtj = utj

where qtj, ptj ∈, utj R2.

If target j is a non-maneuvering target then utj = 0 [5].
• Knowledge of sensors about targets is limited to targets

positions and velocities.

2.1. Flocking algorithm

The Flocking algorithm, which is inspired from the collective
behavior of birds, is based on three main Reynold’s rules: flock
centering, collision avoidance and velocity matching [21]. Flock
centering aims to keep eachparticle close to its nearby flock-mates.
Collision avoidance tries to avoid collisions between nearby flock-
mates, and velocity matching aims to match the velocity of each
particle with that of all nearby flock-mates.

Olfati-Saber proposed a famous theoretical framework for
Flocking algorithm based on these three rules [13]. In this
framework, each sensor applies a control input vector: ui = f gi +

f di +f γ

i where f gi is a gradient-based term, f di is a velocity consensus
term and f γ

i is navigational feedback due to a group objective. In
this method ui = uα

i + uγ

i in which:

uα
i =


j∈Ni

∅α

qj − qi


σ


nij  

Gradient-based term

+


j∈Ni

aij (q)

pj − pi


  

Consensus term

(1)

where, Ni represents the set of neighbors of sensor i, and ∅α (z) is
an action function that is defined in [13] as follows:

∅α (z) = ρh (z/rα) ∅ (z − dα) (2)

∅ (z) =
1
2
[(a + b) σ1 (z + c) + (a − b)] . (3)

In the above, rα and dα are constant parameters of α-lattice;
σ1 (z) = z/

√
1 + z2 and ∅ (z) is an uneven sigmoidal functionwith

parameters that satisfy 0 < a ≤ b, c = |a − b| /
√
4ab; and ρh (z)

is a bump function that smoothly varies between 0 and 1 and is
defined in Eq. (4) [13]:

ρh (z) =


1, z ∈ [0, h)
1
2


1 + cos


π

(z − h)
(1 − h)


, z ∈ [h, 1]

0, otherwise.

(4)

One can show thatρh (z) is a C1-smooth functionwith the property
that ρ́h (z) = 0 over the interval [1, ∞) and

ρ́h (z)
 is uniformly

bounded in z [13]. The other parameters of the Eq. (1) are defined
as follows:qj − qi


σ
represents the σ -norm of a vector that connects qi

to qj defined as in [13]:

∥z∥σ =
1
ε


1 + ε ∥z∥2

− 1


(5)

nij = ∇
qj − qi


σ

=
qj − qi

1 + ε
qj − qi

2
(6)

where nij is a vector along the line connecting qi to qj, and ε ∈ (0, 1)
is a fixed parameter of σ -norm.
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