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a b s t r a c t

When an autonomous vehicle is traveling through some scenario it receives a continuous streamof sensor
data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant
information. Thus, it is not trivial how a representation of the environment observed by the vehicle can
be created and updated over time. This paper presents a novel methodology to compute an incremental
3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal
primitives to model the scenario. This means that the representation of the scene is given as a list of
large scale polygons that describe the geometric structure of the environment. Furthermore, we propose
mechanisms designed to update the geometric polygonal primitives over timewhenever fresh sensor data
is collected. Results show that the approach is capable of producing accurate descriptions of the scene,
and that it is computationally very efficient when compared to other reconstruction techniques.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recent research in the fields of pattern recognition suggest that
the usage of 3D sensors improves the effectiveness of perception,
‘‘since it supports good situation awareness for motion level tele-
operation as well as higher level intelligent autonomous func-
tions’’ [1]. Nowadays, autonomous robotic systems have at their
disposal a new generation of 3D sensors, which provide 3D data
of unprecedented quality [2]. In robotic systems, 3D data is used
to compute some form of internal representation of the environ-
ment. In this paper, we refer to this as 3D scene representation or
simply 3D representation. The improvement of 3D data available
to robotic systems should pave the road for more comprehensive
3D representations. In turn, advanced 3D representations of the
scenes are expected to play a major role in future robotic appli-
cations since they support a wide variety of tasks, including navi-
gation, localization, and perception [3].
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In summary, the improvement in the quality of 3D data
clearly opens the possibility of building more complex scene
representations. In turn,more advanced scene representationswill
surely have a positive impact on the overall performance of robotic
systems. Despite this, complex scene representations have not yet
been substantiated into robotic applications. The problem is how
to process the large amounts of 3D data. In this context, classical
computer graphics algorithms are not optimized to operate in
real time, which is a non-negotiable requirement of the majority
of robotic applications. Unless novel and efficient methodologies
that produce compact, yet elaborate scene representations, are
introducedby the research community, robotic systems are limited
tomapping the scenes in classical 2D or 2.5D representations or are
restricted to off-line applications.

Very frequently, the scenarios where autonomous systems
operate are urban locations or buildings. Such scenes are often
characterized for having a large number of well defined geometric
structures. In outdoor scenarios, these geometric structures could
be road surfaces or buildings, while in indoor scenarios they may
be furniture, walls, stairs, etc. We refer to the scale of these
structures as a macro scale, meaning that 3D sensor may collect
thousands of measurements of those structures in a single scan.
A scene representation is defined by the surface primitive that
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Table 1
LIDAR sensor systems mounted on some autonomous vehicle systems of recent years.

Institution Vehicle Ref. 3D sensor type Totala

2D laser 3D laser

Stanford U. Stanleyb [11] 5× Sick LMS 291 – 67.5
CMU Sandstormb [12] 3× Sick LMS 291 – 50.5

Highlanderb Riegl Q140i –
CMU Bossb [13] 6× Sick LMS 291 Vel. HDL-64 2305.0

2× Continental ISF 172 –
2× IBEO Alasca XT –

Stanford U. Juniorc [14] 4× SICK LMS 291 Vel. HDL-64 2278.0
2× IBEO Alasca XT –

Virginia Tech Odinc [15] 4× Sick LMS 291 – 90.0
2× IBEO Alasca XT –
IBEO Alasca AO –

MIT Talosc [6] 12× Sick LMS 291 Vel. HDL-64 2361.2
U. Munich MuCar-3d [16] – Vel. HDL-64 2200.0
Google Driverless Car [17] – Vel. HDL-64 2200.0
a Estimation of total 3D data throughput of all LIDAR sensors mounted on the vehicle, given as points×103/s.
b These vehicles participated in the Defense Advanced Research Projects Agency (DARPA) Grand Challenge 2006.
c These vehicles participated in the DARPA Urban Challenge 2007.
d This vehicle participated in the Civilian European Land Robot Trial (ELROB) Trial 2009.

is employed. For example, triangulation approaches make use
of triangle primitives, while other approaches such as Poisson
surface reconstruction resort to implicit surfaces. Triangulation
approaches generate surface primitives that are considered to have
amicro scale, since a geometric structure of the scene could contain
hundreds or thousands of triangles. Micro scale primitives are
inadequate tomodel large scale environments because they are not
compact enough.

In this paper, we present a novel methodology to compute a
3D scene representation. The algorithmusesmacro scale polygonal
primitives to model the scene. This means that the representation
of the scene is given as a list of large scale polygons that
describe the geometric structure of the environment. The proposed
representation addresses the problems that were raised in the
previous lines: the representation is compact and can be computed
much faster than most others, while at the same time providing a
sufficiently accurate geometric representation of the scene from
the point of view of the tasks required by an autonomous system.

The second problem addressed in this paper is the reconstruc-
tion of large scale scenarios from a continuous throughput of mas-
sive amounts of 3D data. We will use the distinction between the
terms scene and scenario. Let scenario refer to a particular loca-
tion that should be reconstructed, e.g., a city, a road or a building.
By scene, we refer to the portion of the scenario that is viewed by
the vehicle at a particular time. Thus, the scenario is an integration
of scenes over time. In the case of large scale scenarios, the com-
pactness of a given scene representation is even more important.
In this paper, we focus also on how the representation may evolve
by integrating 3D data from multiple measurements over time.

This is an extended version of [4]. The new material covers
mostly the incremental part of the geometric reconstruction. There
is also the possibility of adding texture to the geometric scene
description. For further details on this see [5].

For testing and evaluation purposes, we use a data-set from
the Massachusetts Institute of Technology (MIT) Team, taken from
their participation in the DARPA Urban Challenge [6]. From this
data-set we have extracted a 40 s sequence which will be used to
assess the proposed algorithms. For the remainder of the paper,
this sequence is referred to as MIT sequence. Using this data-set,
we aim at reconstructing large portions of the urban environment
in which the competition took place.

The remainder of this paper is organized as follows: Section 2
reviews the state of the art, Section 3 presents the proposed
approach. Results are given in Section 4 and conclusions in
Section 5.

2. Related work

At first glance, it would seem plain to translate the improve-
ment on the quality of the 3D data into an enhancement of the
3D representations. However, the fact is that the majority of the
robotic systems, namely autonomous vehicles, continue to rely on
classic 2D or 2.5D scene representations [7], such as occupancy
grids [8] or elevation maps [9], or use discretized grid-like ap-
proaches as in octrees [10]. The reason for that is that autonomous
vehicles commonly require a large array of sensors installed on-
board and, as a consequence, collect large amounts of range mea-
surements every second. Table 1 shows an estimate of the amount
of 3D data (measured by LIDAR systems alone) generated by sev-
eral autonomous vehicles. Simplified 2D or 2.5D representations
are used so that they can be computed in real time using large
amounts of data. More advanced 3D representations have not been
introduced in robotics because they fail to abide to the require-
ments of real time processing using the 3D data produced by new
generation LIDAR sensors. One example of this is the method-
ologies used in the computer graphics research field: traditional
algorithms such as building of triangular meshes are unable to op-
erate in real time with the throughput of data provided by new
generation 3D sensors. Some authors have tried to optimize tri-
angulation algorithms (e.g., [2,7]), and they report near real time
performances. Note that these results were obtained using point
clouds from aMicrosoft Kinect 3D camera.1 On the other hand, the
results provided towards the end of this paper are obtained using
point clouds fromaVelodyneHDL-64E Lidar,2 and therefore results
are not directly comparable.

Scene reconstruction is defined as the computation of a geomet-
ric 3D model from multiple measurements. These measurements
could be obtained from stereo systems, range sensors, etc. Scene
reconstruction may also include the texturing of the generated 3D
model. Scene reconstruction methodologies are grouped into two
different approaches: surface based representations or volumetric
occupancy representations. In the first, the underlying surfaces of
the scene that generated the range measurements are estimated,
while in the second, the rangemeasurements are grouped into cells
of a grid, and are then labeled free or occupied. Traditional surface
based representations include several 3D triangulations method-
ologies, such as 3D Delaunay triangulation [18], or Ball Pivoting

1 http://en.wikipedia.org/wiki/Kinect.
2 http://velodynelidar.com/lidar/lidar.aspx.
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