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a b s t r a c t

Matrix factorization methods have been widely applied for data representation. Traditional concept
factorization, however, fails to utilize the discriminative structure information and the geometric
structure information that can improve the performance in clustering. In this paper, we propose a
novel matrix factorization method, called Local Regularization Concept Factorization (LRCF), for image
representation and clustering tasks. In LRCF, according to local learning assumption, the label of each
sample can be predicted by the samples in its neighborhoods. The new representation of our proposed
LRCF can encode the intrinsic geometric structure and discriminative structure of the high-dimensional
data. Furthermore, in order to utilize the label information of labeled data, we propose a semi-
supervised version of LRCF, namely Local Regularization Constrained Concept Factorization (LRCCF), which
incorporates the label information as additional constraints. Moreover, we develop the corresponding
optimization schemes for our proposed methods, and provide the convergence proofs of the optimiza-
tion schemes. Various experiments on real databases show that our proposed LRCF and LRCCF are able to
capture the intrinsic latent structure of data and achieve the state-of-the-art performance.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past years, data representation has become a fundamental
problem in various research fields like computer vision and machine
learning [1–8]. Thus, we often need to deal with the high dimensional
data. As we all know, it poses a serious challenge for data analysis and
processing. Consequently, many efforts have been devoted to seeking a
suitable low-dimensional representation for the high-dimensional
data. Matrix factorization is a popular technique for data representa-
tion, which aims to find two or more low rank matrices to approx-
imate the original data. Up till now, many researchers have proposed a
set of matrix factorization methods [9–16] to represent the high-
dimensional data based on different purposes.

Among matrix factorization methods, PCA [9] and LDA [10] are two
well-known methods for data representation and feature extraction,
which have been widely used to learn a low-dimensional representa-
tion. PCA and LDA effectively see only the global geometric structure,
but they fail to discover the underlying manifold structure. To solve
this issue, a variety of manifold-based learning algorithms, such as
isometric feature mapping (ISOMAP) [11], locally linear embed-
ding (LLE) [12] and Laplacian Eigenmap (LE) [13], have been
developed for dimensionality reduction and feature extraction.

One limitation of these manifold learning methods is that they
cannot map new coming samples. In order to solve this issue,
He et al. proposed Locality Preserving Projections (LPP) [14] and
Neighborhood Preserving Embedding (NPE) [15], which are the
linearization of LE and LLE, respectively. In addition, kernel-based
techniques [16] are employed to deal with the nonlinear distribution
data. The basic idea is to implicitly map the original data into high-
dimensional Reproducing Kernel Hilbert Space (RKHS) via kernel
trick. Such methods make it possible for the nonlinear structure of
data in original input space to become linear in RKHS space, and thus
the linear techniques in pattern recognition can be applied to handle
the data in kernel space.

Unlike the methods mentioned previously, NMF [17] has received
considerable attention due to its psychological and physiological
interpretation in the human brain. NMF, as a parts-based representa-
tion method, tries to find two low-rank non-negative matrices whose
product is a good approximation to the original high-dimensional
data. However, in practical applications, it is difficult that all elements
of the original data are required to be non-negative due to noise or
outlier. In addition, NMF fails to be performed on negative data
owing to the non-negative limitation. Besides, it is difficult that NMF
can be kernelized to improve the performance in clustering. To
overcome these disadvantages, a variation of NMF, namely Concept
Factorization (CF) [18], is proposed for data representation. In CF,
each cluster can be linearly represented by all the samples, and each
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sample can be linearly represented by the cluster centers. Compared
with NMF, CF can not only be kernelized, but also can be performed
in any case.

Recently, Cai et al. [19] developed a graph regularization non-
negative matrix factorization (GNMF) algorithm to capture nonlinear
manifold structure of the original data set with resort to the Laplacian
graph regularization technique. This approach can preserve the
intrinsic geometrical manifold structure properties from the original
high-dimensional space to new representation space. Unfortunately,
during matrix factorization processing, GNMF only considers the
favorite similarities of the data pairs, and neglects the dissimilarities
for the data pairs. To solve this issue, a general framework, called non-
negative graph embedding (NGE) [20], is proposed for non-negative
data decomposition by integrating the characteristics of both intrinsic
and penalty graphs. In NGE, the intrinsic graph and the penalty graph
are used to characterize the intra-class compactness and the variance
information of the data, respectively. GNMF and NGE, however, take
no consideration of multi-geometry information of the data. To
overcome this drawback, Zeng et al. [20] proposed a hyper-graph
regularized nonnegative matrix factorization (HGNMF) algorithm for
data representation. HGNMF extracts the multi-geometry information
of samples by constructing a weighted hyper-graph regularization
term. Furthermore, Cai et al. [21] developed a locally consistent
concept factorization (LCCF) algorithm for documents clustering. It
assumes that the nearby data points are likely to be in the same
cluster, which is called local consistency assumption. GNMF and
LCCF are able to discover the underlying local geometrical structure,
but the high dimensional data points may not always satisfy the
locality conditions. Since the local points share the greatest simi-
larity, it would be more natural to represent the basis vectors by
using a few nearby anchor points, which may lead to a more
efficient representation of the data. To solve this issue, Chen et al.
[22] proposed a non-negative local coordinate factorization (NLCF)
method by adding a local coordinate constraint that can ensure the
locality of the low dimensional representation. Then Liu et al. [23]
proposed a locality-constrained concept factorization (LCF) algo-
rithm to impose a locality constraint on the objective function of
concept factorization. In reality, locality constraint cannot well
reveal the intrinsic structure since it only requires the concept to
be as close to the original data points as possible. To address this
problem, Li et al. [24] introduced a graph-based local concept
coordinate factorization (GLCF) method based on LCF. GLCF not
only respects the intrinsic structure of the data via manifold kernel
learning, but also considers the locality constraints in revealing the
underlying concepts. Additional, some further studies of the matrix
factorization have also been developed [25–31] based on different
constraints during the last few years.

Inspired by the local learning assumption, we propose a novel
concept factorization method, called Local Regularization Concept
Factorization (LRCF), for data representation and clustering tasks.
LRCF explicitly considers the local structure of the data by using
the local learning technique during the decomposition process.
Specifically, for each data point, we can construct a local label
predictor to estimate the label of this data point. Besides, in order
to consider the available label information, we propose a semi-
supervised version of LRCF, called Local Regularization Constrained
Concept Factorization (LRCCF), which takes the limited label infor-
mation and local structure information into account, simulta-
neously. Our experimental evaluations on several real data sets
show that our proposed LRCF and LRCCF perform better than other
state-of-the-art matrix factorization methods.

The major contributions of this paper lie in:

(1) In our proposed LRCF, the label of each data sample can be
estimated by the samples in its local neighborhood by adding
the local learning regularization. Thus, the low dimensional

representation of LRCF can encode both the discriminative
information and the instinct geometric structure information
of the high-dimensional data. Compared with the conventional
CF, we can obtain a better low-dimensional representation of
the high-dimensional data.

(2) LRCCF is a semi-supervised learning algorithm, that is, LRCCF
makes full use of the prior knowledge of the data. Specifically, it
imposes the label information as hard constraints on the basis
vectors. Therefore, the original data from the same class can map
together in the low dimensional representation space. As a result,
LRCCF jointly takes account of both the label information and
local structure information. In this way, the new representation
of LRCCF can exhibit more discriminative power than the
unsupervised learning methods, such as LRCF. Moreover, LRCCF
utilizes the label information in a parameter-free way.

(3) We develop the corresponding multiplicative updating opti-
mization schemes with proving their convergence to solve the
proposed algorithms. In addition, we give a general scheme to
perform on positive as well as negative data.

The rest of this paper is organized as follows. We provide a brief
review of NMF, CF and local learning regularization technique
in Section 2. We present our proposed approaches as well as the
detailed derivations in Section 3. Experimental results are reported
in Section 4 with considerable analysis. Finally, we draw a conclu-
sion in Section 5.

2. Related work

In this section, we primarily review some related work to
our work.

2.1. NMF

Given a non-negative matrix X¼ ½x1;⋯; xn�ARm�n, where each
vector xi represents a sample. NMF aims to seek two low-rank non-
negative matrices UARm�k and VARn�k, where k⪡ minðm;nÞ. Such
that the product of U and V can well approximate the original data
matrix X. Thus, the objective function of NMF can be expressed as
follows:

O¼ ‖X�UVT‖2F
s:t: U40;V40 ð1Þ

In this paper, ‖U‖F denotes the Frobenius norm. It is easy to check
that the objective function of NMF is not convex in both U and V
together. It is, therefore, unrealistic to find the global solution of the
objective function of NMF. The most popular optimization method of
NMF is the multiplicative updating algorithm proposed by Lee and
Seung [17]. As such, the objective function of NMF in Eq. (1) can be
solved by the following updating rules:

utþ1
ij ’ut

ij
ðXVÞij

ðUVTVÞij

vtþ1
ij ’vtij

ðXTUÞij
ðVUTUÞij

2.2. CF

In CF, each base vector uj can be represented as a linear
combination of the data samples uj ¼

P
iwijxi, wherewijZ0. Let

W¼ ½wij�ARN�K , CF aims to seek the following approximation:

X�XWVT ð2Þ
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