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a b s t r a c t

In this paper, a class of uncertain neural networks with discrete interval and distributed time-varying
delays and Markovian jumping parameters (MJPs) are carried out. The Markovian jumping parameters
are modeled as a continuous-time, finite-state Markov chain. By using the Lyapunov–Krasovskii
functionals (LKFs) and linear matrix inequality technique, some new delay-dependent criteria is derived
to guarantee the mean-square asymptotic stability of the equilibrium point. Numerical simulations are
given to demonstrate the effectiveness of the proposed method. The results are also compared with the
existing results to show the less conservativeness.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that, many kinds of neural networks such as
cellular neural networks, Hopfield neural networks, Cohen–Gross-
berg neural networks, recurrent neural networks (RNNs), complex
dynamical networks (CDNs), bidirectional associative memory
(BAM) neural networks, chaotic neural networks (CNNs) and static
neural networks (SNNs) have been studied, since their extensive
applications in different fields such as fault diagnosis, pattern
recognition, signal processing and parallel computation [1–6].
Some of these applications require the equilibrium points of the
designed network to be stable. Since axonal signal transmission
time delays often occur in various neural networks, and may also
cause undesirable dynamic network behaviors such as oscillation
and instability. Thus it is important to study the stability of neural
networks [7–9].

On the other hand Markovian jump neural networks (MJNNs)
can be regarded as a special class of hybrid systems, which can
model dynamic systems whose structures are subject to random
abrupt parameter changes resulting from component or intercon-
nection failures, sudden environment changes, changing subsys-
tem interconnections, and so forth [10,11]. A neural network may

have finite modes, which may jump from one to another at various
time. It is shown that such jumping can be determined by a
Markovian chain [12]. Much work on MJNNs has been reported in
the literature [13–16]. A great number of results on the stability
and estimation problems related to such neural networks (NNs)
have appeared in the recent years [17]. Applications of this kind of
neural networks can be found in modeling production systems,
economic systems, and other practical systems.

The phenomena of time-delays are very often encountered in
various physical systems, like communication systems, nuclear
reactors, aircraft stabilization, ship stabilization, models of lasers,
manual control and systems with lossless transmission lines, for
example see [18–22]. Stability is always required for the real-world
applications of neural networks, since their potential applications
to solve some previously unsolvable problems and improve system
performance in many fields such as pattern recognition, fault
diagnosis, signal processing and parallel computation. Some of
these applications require the equilibrium points of the designed
network to be stable. Thus, stability analysis is one of the
fundamental research issues in the study of neural networks. In
the past decade, lots of research efforts have been devoted to the
stability analysis of neural networks with time delays. This is
because time delays are unavoidable in neural networks and, more
importantly, the existence of time delays often makes a neural
network unstable.

In practice, interval time delays exist in biological and artificial
neural networks due to the finite switching speed of neurons and
amplifiers. That is, the range of delay varies in an interval for which
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the lower bound is not restricted to zero. The interval time-varying
delays are used to indicate the promoted speed of signals is finite
and uncertain in systems [23,24]. And, note that while signal
propagation is sometimes instantaneous and can be modeled with
discrete delays, it may also be distributed during a certain time
period so that distributed delays are incorporated into the model.
The time-varying delays are assumed to be unbound. The distrib-
uted delays were studied in [25] due to the spatial nature of a neural
network with an amount of parallel pathways of a variety of axon
sizes and lengths in many cases. Therefore, both discrete time-
varying and distributed time-varying delays should be taken into
account when modeling a realistic neural network [26–28]. How-
ever, delay-dependent stability criteria of uncertain Markovian
jump neural networks with interval and distributed time-varying
delays has not done yet. Which motivates our work.

From the above discussions, in this paper we studied the delay-
dependent stability criteria of uncertain Markovian jump neural
networks with interval and distributed time-varying delays. A
sufficient condition has been obtained in terms of Linear matrix
inequalities. Lyapunov–Krasovskii functionals together with the
zero function guarantee the asymptotic stability of the neural
networks. The developed results in this paper are generally less
conservative than some existing methods. To show the less
conservativeness of our result, numerical simulations are given.

Notations: Throughout this paper, Rn and Rn�n denote, respec-
tively, the n-dimensional Euclidean space and the set of all n� n
real matrices. For a matrix B and two symmetric matrices A and C,
A
n

B
C

� �
denote the symmetric matrix, where the notation n repre-

sents the entries implied by symmetry. AT and A�1 denote the
matrix transpose and inverse of A respectively. We say X40
means that the matrix X is real symmetric positive definite with
appropriate dimensions. I denotes the identity matrix with appro-
priate dimensions. Let ðΩ;F ;PÞ be a complete probability space
which is related to an increasing family ðF tÞt40 of σ algebras

ðF tÞt40 �F , where Ω is the sample space, F is σ algebra of
subsets of the sample space and P is the probability measure on F .

Let J f J2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1
0 J f J2 dt

q
; f ðtÞAL2½0;1Þ, J f J refers to the Euclidean

norm of the function f(t) at the time t. L2½0;1Þ is the space of
square integrable vectors on ½0;1Þ.

2. Problem statement

Consider the following delayed Markovian jump neural net-
works with discrete interval and distributed time-varying delays:

_yðtÞ ¼ �AðrðtÞÞyðtÞþBðrðtÞÞgðyðtÞÞþCðrðtÞÞgðyðt�τðtÞÞÞ

þDðrðtÞÞ
Z t

t�dðtÞ
gðyðsÞÞ dsþνðtÞ; ð1Þ

where yðtÞ ¼ ½y1ðtÞ; y2ðtÞ;…; ynðtÞ�T ARn is the state vector of the
network at time tZ0, n corresponds to the number of neurons,
A¼ diagfa1;…; ang is a diagonal matrix with ai40, i¼ 1;2;…;n. B,
C and D represent the connection weight matrix, the discretely
delayed connection weight matrix and the distributively delayed
connection weight matrix, respectively. gðyðtÞÞ ¼ ½gð
y1ðtÞÞ;…; gðynðtÞÞ�T ARn denotes the neuron activation function at
time t. νðtÞ denotes the external inputs at time t. τðtÞ and d(t)
denote the time-varying and distributed delays, respectively, and
are assumed to satisfy

τ1rτðtÞrτ2; _τðtÞrμ1; 0rdðtÞrd; _dðtÞrμ2;

where τ24τ140, d, μ1 and μ2 are constants.
Assume that yn ¼ ½yn

1; y
n

2;…; yn
n�T is an equilibrium point of Eq. (1),

one can derive from (1) that the transformation xðtÞ ¼ yðtÞ�yn

transforms system (1) into the following uncertain Markovian jump
neural networks with discrete interval and distributed time-varying
delays:

_xðtÞ ¼ �AðrðtÞÞxðtÞþBðrðtÞÞf ðxðtÞÞþCðrðtÞÞf ðxðt�τðtÞÞÞ

þDðrðtÞÞ
Z t

t�dðtÞ
f ðxðsÞÞ ds; ð2Þ

where x(t) is the state vector of the transformation system and
f ðxðtÞÞ ¼ gðxðtÞþynÞ�gðynÞ.

The matrices AðrðtÞÞ ¼ AðrðtÞÞþΔAðrðtÞÞ, BðrðtÞÞ ¼ BðrðtÞÞþ
ΔBðrðtÞÞ, CðrðtÞÞ ¼ CðrðtÞÞþΔCðrðtÞÞ and DðrðtÞÞ ¼DðrðtÞÞþΔDðrðtÞÞ
are real constant matrices with appropriate dimensions for all
rðtÞAN . In that AðrðtÞÞ, BðrðtÞÞ, CðrðtÞÞ and DðrðtÞÞ are real-valued
known constant matrices. And ΔAðrðtÞÞ, ΔBðrðtÞÞ, ΔCðrðtÞÞ and
ΔDðrðtÞÞ are real-valued unknown matrices representing time-
varying parameter uncertainties, and are assumed to be of the
form

ΔAðrðtÞÞ ΔBðrðtÞÞ ΔCðrðtÞÞ ΔDðrðtÞÞ� �
¼MðrðtÞÞFðrðtÞÞ E1ðrðtÞÞ E2ðrðtÞÞ E3ðrðtÞÞ E4ðrðtÞÞ½ �; ð3Þ

where MðrðtÞÞ, E1ðrðtÞÞ, E2ðrðtÞÞ, E3ðrðtÞÞ and E4ðrðtÞÞ are known real
constant matrices for all rðtÞAN and FðrðtÞÞ is the uncertain time-
varying matrix satisfying

FT ðrðtÞÞFðrðtÞÞr I; 8rðtÞAN : ð4Þ

Let frðtÞ; tZ0g be a right-continuous Markov chain on a prob-
ability space ðΩ;F ;PÞ taking values in a finite state space
N ¼ f1;2;…;mg with generator Π ¼ fπijg given by

PfrtþΔ ¼ jj rðtÞ ¼ ig ¼
πijΔþoðΔÞ; ia j

1þπijΔþoðΔÞ; i¼ j

(

where Δ40, limt-þ1oðΔÞ=Δ¼ 0, πijZ0 is the transition rate from
i to j if ja i while πii ¼ � Pm

j ¼ 1;ja i πij. The initial system mode
probability vector is defined by

πð0Þ ¼ ½πið0Þ⋯πmð0Þ�T :

Note that the system mode probability vector πðtÞ can be found via

_π ðtÞ ¼ΠTπðtÞ:

The Markov process transition rate matrix Π is defined by

Π ¼

π11 π12 ⋯ π1n

π21 π22 ⋯ π2n

⋮ ⋮ ⋱ ⋮
πn1 πn2 ⋯ πnn

2
6664

3
7775

Here, we assume that the Markov process is irreducible.
In order to obtain our main results, the activation functions in

(1) are assumed to satisfy the following assumption.

Assumption 1. Each activation function in system (1) fi(t)
ði¼ 1;2;…;nÞ is continuous and bounded, and satisfies the follow-
ing conditions:

0r f iðk1Þ� f iðk2Þ
k1�k2

rLi;

where Li ði¼ 1;2;…;nÞ are some constants and k1, k2AR, k1ak2.

Lemma 2.1 (Syed Ali and Saravanakumar [29]). For any scalars
τðtÞr0 and any constant matrix QARn�n, Q ¼ QT 40, the following
inequality holds:

�
Z t

t�τðtÞ
_xT ðsÞQ _xðsÞ dsrτðtÞξT ðtÞVQ �1VTξðtÞþ2ξT ðtÞV ½xðtÞ�xðt�τðtÞ�;
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