
Fast orthogonal linear discriminant analysis with application
to image classification

Qiaolin Ye a,n, Ning Ye a, Tongming Yin b

a College of Information Science and Technology, Nanjing Forestry University, Nanjing, PR China
b College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, PR China

a r t i c l e i n f o

Article history:
Received 28 October 2013
Received in revised form
17 November 2014
Accepted 23 January 2015
Communicated by T. Heskes
Available online 3 February 2015

Keywords:
Linear discriminant analysis
Orthogonal linear discriminant analysis
Orthogonal projection vectors
QR decomposition

a b s t r a c t

Compared to linear discriminant analysis (LDA), its orthogonalized version is a more effective statistical
learning tool for dimension reduction, which devotes to better separating the data points from different
classes in the lower-dimensional subspace. However, existing orthogonalized LDA techniques suffer from
various drawbacks, including the requirement for expensive computing time. This paper develops an
efficient orthogonal dimension reduction approach, referred to as fast orthogonal linear discriminant
analysis (FOLDA), which is based on existing orthogonal linear discriminant analysis (OLDA) algorithms.
However, different from previous efforts, the new approach applies the QR decomposition and the
regression to solve for a new orthogonal projection vector at each iteration, leading to the by far cheaper
computational cost. FOLDA achieves comparable recognition rate to existing OLDA algorithms due to the
incorporation of the idea and spirit behind the latter ones. Experimental results on image databases,
such as MINST, COIL20, MEPG-7 and OUTEX, show the effectiveness and efficiency of our algorithm.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Techniques for dimension reduction can be implemented to
seek for such an optimal low-dimensional space that is helpful for
mitigating the so-called “curse of dimensionality” and improving
the performance of any classifier, etc. Linear DR finds a meaningful
lower-dimensional subspace which provides a compact represen-
tation of higher-dimensional data when the data structure is linear
in the input space [1,2]. Two most notable linear dimension
reduction techniques are principal component analysis (PCA) [1]
and linear discriminant analysis (LDA) [3] that have gained wide
applications in computer vision and pattern recognition because of
their relative simplicity and effectiveness [1,4–6]. Many compara-
tive studies between LDA and PCA on image classification or
recognition were made by numerous researchers [3,5–7], in which
the results demonstrated that in the terms of recognition rates
LDA outperformed PCA significantly [8], implying that it is impor-
tant for satisfactory design of any classifier to incorporate the
supervised information in DR. Thus, LDA can be applied to a family
of pattern recognition problems [1,6,9].

The central idea of the classical LDA is to find the optimal
projection or transformation that better separates different
classes. This optimal projection is obtained by maximizing the

between-class dispersion and simultaneously minimizing the
within-class dispersion, thus achieving the discrimination
between classes. The objective function in the classical LDA is a
trace-ratio problem, in which the optimal projection can be
computed by a generalized eigenvalue problem. Due to the
discrimination of images from different classes, LDA has a direct
connection to classification. Despite the effectiveness and applic-
ability, there are many serious limitations in the classical LDA,
resulting in many extensions and improvements (we can only cite
the most significant ones). The most well-known one is the
undersampled or singularity problem in many applications, such
face recognition [3], where the dimension of feature space is much
larger than the size of training set. Over the past decade, many
algorithms have been proposed to solve this problem. In the
research [3], Belhumeur et al. proposed to apply LDA after PCA.
The authors in [10] used LDA after Singular Value Decomposition
(SVD). A common aspect of these two approaches is to perform
LDA after another stage of dimension reduction. Since the rank of
the within-class scatter matrix Sw is upper bounded by m–c, the
maximum dimension of the PCA (or SVD) should be reduced tom–

c, where m is the size of training set and c denotes the size of
classes. However, there is a serious problem in PCAþLDA, which is
that the most discriminant information may be lost [11]. To
mitigate this problem, there are researchers who suggest keeping
the most energy of in the PCA stage [8,12]. Another way to solve
the singularity problem in classical LDA is to add the positive
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constants to the diagonal elements of Sw [13]. These algorithms,
like classical LDA, transform the trace ratio problems into the ratio
trace problems, leading to the non-optimal solution [14].

In [15], Duchene et al. proposed orthogonal linear discriminant
analysis (OLDA). OLDA enforces an orthogonality relationship
between the discriminant projection vectors to eliminate the
redundant information in projection, thus achieving the more
powerful discriminant projection vectors than the classical ones
in the terms of recognition rates. They adopt a well-designed
iterative procedure, and in each iteration, they aim at solving the
primal eigenvalue problem of LDA under such an imposed con-
straint that a new projection vector to be calculated is orthogonal
to all the previously obtained projection vectors. Since the projec-
tion vectors are independent of the size of classes, there is not
such a limitation that the number of projection vectors available is
limited to c�1. Similar to OLDA, Xiang et al. extended LDA to
recursive fisher linear discriminant (RFLD) [8] in which all projec-
tion vector are obtained recursively, step by step. Different from
OLDA which directly solves a Rayleigh quotient problem with an
orthogonality constraint by employing the Lagrange multiplier
method, RFLD first rewrites the LDA eigenvalue problem as a
generalized eigen-equation, i.e., Sbwk ¼ λSwwk, and then combines
the orthogonality constraint with this equation in each iteration,
where Sw and Sb denote the within-class scatter matrix and the
between-class scatter matrix, respectively. Eventually, RFLD still
solves a generalized eigen-equation problem in each iteration. It is
necessary to note that before new projection vector is computed,
the information represented by the previous ones is eliminated
from all the samples. Despite the effectiveness of RFLD, RFLD, like
OLDA, is expensive computationally, due to that each iteration
involves both eigen-decomposition and many operations of matrix
inverses as well as matrix multiplications. Still one orthogonal
linear discriminant algorithm is maximum margin criterion
(MMC) [16], which casts the Rayleigh quotient formulation of
the classical LDA as the difference formulation. In addition to
establishing the orthogonality relationship between projection
vectors, MMC can avoid the singularity problem. Like LDA, it can
only extract at most C�1 meaningful features [17]. Both OLDA and
RFLD permit to define a best discriminant vector, orthogonal to a
set of the previously computed vectors, without using any statis-
tical property of this set [15], which is in contrast to MMC.
Furthermore, when the dimensionality in the input space is large,
it is not infeasible to apply MMC due to the expensive computation
resulting from the solution to the formulated large-scale eigenva-
lue problem.

LDA is to solve the eigen-decomposition problem, which is
computationally expensive. To speed up the computation of the
LDA problem, Cai et al. proposed spectral regression (SR) [18]. The
core idea of SR resort to two separate strategies by first producing
response vectors without needing to solve the eigen-
decomposition problem and then finding the projection vectors
by a regularized least squares formulation which aims to approx-
imate to the response vectors. The computational advantage over
LDA is justified by experiments on large image databases. In this
paper, we develop a novel algorithm for discriminant analysis,
referred to as fast orthogonal linear discriminant analysis (FOLDA),
which is essentially based on RFLD [8]. Like RFLD [8], the new
approach seeks for the orthogonal projection vectors iteratively.
According to some unique properties of matrix, the solution is
empirically obtained without the need to solve the eigenvalue
problem. Then, the spectral regression [18] is used to obtain a new
orthogonal projection vector. Clearly, the process of solution to the
FOLDA problem does not involve the eigen-decomposition, multi-
ple matrix inverses, and multiplications, leading to the less
computational cost than RFLD. FOLDA does not use any statistical
property of the previously obtained orthogonal projection vectors

and is permitted to define a “best discriminant” vector, orthogonal
to these orthogonal projection vectors. Therefore, there is no
limitation on the number of projection vectors available from
FOLDA, which is in contrast to MMC. We also demonstrate the
efficiency of FOLDA by analyzing and comparing the time com-
plexities of existing orthogonal methods. The experiment is tried
out on four image databases, such as MEPG-7, COIL20, MIST, and
OUTEX indicates the effectiveness and efficiency of our proposed
FOLDA algorithm.

2. Related works

In this section, we briefly review LDA and its two orthogonal
extensions, such as RFLD [8] and MMC [16]. We denote the sample
set as X¼ x1; x2;…;xn½ �, xiAℝd, where n is the sample size and d
the feature dimensionality. The class label of the sample xi is from
the set 1;2;…; cgf , where c is the number of classes. Define nl as
the number of the labeled samples from the lth class. Let

Wðk�1Þ ¼ w1;w2;…;wk�1ð ÞARd�ðk�1Þ be a set of previously-
computed k�1 orthogonal projection basis vectors. Define by
zAℝrð1rrrdÞ a low-dimensional representation of a high-
dimensional sample x in the original input space, where r is the
dimensionality of the reduced space. The purpose of DR is to seek
for a transformation matrix W, such that a lower representation z
of the sample x can be yielded as z¼WTx, where T denotes the
transpose.

2.1. Linear discriminant analysis (LDA)

LDA seeks for projection vectors on which the data points from
different classes are well separated. The objective function of LDA
is as follows:

Wn ¼ arg max
trðWTSbWÞ
trðWTSwWÞ

ð1Þ

or

Wn ¼ arg max
trðWTSbWÞ
trðWTStWÞ

ð2Þ

where Sw ¼ Pc
l ¼ 1

Pnl
i ¼ 1ðxi�μlÞðxi�μlÞT , Sb ¼

Pc
l ¼ 1 nlðμl�μÞðμl

�μÞT , and St ¼
Pn

i ¼ 1ðxi�μÞðxi�μÞT denote the within-class scatter
matrix, the between-class scatter matrix, and the global scatter matrix,
respectively, in which μl and μ denote the respective mean of the
sample set in lth class and the complete training set. The projection
vectors are selected as the eigenvectors corresponding to the first r

largest eigenvalues of ðSwÞ�1Sb or ðStÞ�1Sb.
From a graph-embedding viewpoint, the objective function of

LDA in (2) is equivalent to [18]

Wn ¼ arg max
trðWTXVX

T
WÞ

trðWTXX
T
WÞ

ð3Þ

in which V¼

Vð1Þ 0 … 0
0 Vð2Þ … 0
⋮ ⋮ ⋱ ⋮
0 0 … VðcÞ

0
BBBB@

1
CCCCA is a matrix of dimensions

n� n, and X denotes the centered data matrix. Here,

VðlÞ; l¼ 1;2;…; c is a nl � nl matrix with the entries equal to
1=nl. LDA is non-orthogonal and has a serious limitation, that is,
the number of projection vectors available is limited to c�1,
which limits its applications to a large class of problems [8].
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