
Robotics and Autonomous Systems 56 (2008) 1061–1067

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Model identification and model analysis in robot training
R. Iglesias b, U. Nehmzow a,∗, S.A. Billings c
a Intelligent Systems Research Centre, University of Ulster, UK
b Electronics & Computer Science, University of Santiago de Compostela, Spain
c Automatic Control and Systems Engineering, University of Sheffield, UK

a r t i c l e i n f o

Article history:
Available online 20 September 2008

Keywords:
Mobile robotics
Robot training
System identification
Narmax
Robot programming

a b s t r a c t

Robot training is a fast and efficient method of obtaining robot control code. Many current machine
learning paradigms used for this purpose, however, result in opaque models that are difficult, if not
impossible to analyse, which is an impediment in safety-critical applications or application scenarios
where humans and robots occupy the same workspace.
In experiments with a Magellan Pro mobile robot we demonstrate that it is possible to obtain

transparent models of sensor-motor couplings that are amenable to subsequent analysis, and how such
analysis can be used to refine and tune the models post hoc.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction: Robot training

Sensor-motor couplings form the back-bone of most mobile
robot control tasks, and often need to be implemented fast,
efficiently, and reliably. Machine-learning techniques, such as
artificial neural networks are commonly used to obtain the desired
sensor-motor competences. However, although these methods
speed up the development of a reactive controller significantly,
most of them produce opaque models that cannot be used to
investigate and ‘‘understand’’ the characteristics of the robot’s
behaviour further.
In [1] we presented a novel procedure to program a robot

controller, based on system identification techniques. Instead of
refining an initial approximation of the desired control code
through a process of iterative refinement by trial and error, the
robot training procedure we proposed identifies the motion of
a manually, ‘‘perfectly’’ driven robot, and subsequently uses the
result of the identification process to achieve autonomous robot
operation. Through the use of a system identification approach
the behaviour of the robot is modelled through a polynomial
representation that is easily and accurately transferable to any
robot platform with similar sensor configuration [2]. Moreover,
this polynomial representation can be analysed to understand the
main aspects involved in robot behaviour: we can for instance
identify the most relevant hardware components of the robot
(e.g. sensors) [3,1], or predict the robot’s response to particular
inputs [4].
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The robot-training process we proposed works in two stages:
first, the robot is driven under manual control demonstrating
the target behaviour. While the robot is being manually moved,
sensor readings and the robot actions are logged. In a second stage,
system identification techniques like ARMAX [5] or NARMAX [6]
are applied to model the relationship between sensor readings,
i.e. perception and actuator signals, i.e. action. These ARMAX and
NARMAXmodels are transparent (i.e. expressed as amathematical
equation) and can therefore be formally analysed, as well as used
in place of ‘‘traditional’’ robot control code.
In this paper we focus our attention on how the mathematical

analysis of NARMAXmodels can be used to understand the robot’s
control actions, to formulate hypotheses, and to correct or improve
the robot’s behaviour. One main objective behind this approach is
to avoid trial-and-error refinement of robot code. Instead, we seek
to obtain a reliable designprocess,where programdesigndecisions
are based on the mathematical analysis of the model which
describes the robot’s behaviour. We demonstrate this procedure
for different robot-behaviours.

2. The NARMAXmodelling procedure

To obtain the desired sensor-motor couplings, we used
the nonlinear system identification of Narmax (nonlinear, auto
regressive moving average models with exogenous inputs). Due to
space limits we can only provide a brief description of the Narmax
modelling strategy, nevertheless this approach is discussed in
detail in [6], and examples of robotics applications are given in our
previous publications [7].
The NARMAX modelling approach is a parameter estimation

methodology for identifying the important model terms and
associated parameters of unknown nonlinear dynamic systems.
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Fig. 1. Left: Robot trajectory under manual control, used to obtain training data. Right: Trajectory taken under control of the obtained model given in Table 1.

For multiple input, single output noiseless systems this model
takes the form:

y(n) = f (u1(n), u1(n− 1), u1(n− 2), . . . , u1(n− Nu),
u1(n)2, u1(n− 1)2, u1(n− 2)2, . . . , u1(n− Nu)2,
. . . ,

u1(n)l, u1(n− 1)l, u1(n− 2)l, . . . , u1(n− Nu)l,
u2(n), u2(n− 1), u2(n− 2), . . . , u2(n− Nu),
u2(n)2, u2(n− 1)2, u2(n− 2)2, . . . , u2(n− Nu)2,
. . . ,

u2(n)l, u2(n− 1)l, u2(n− 2)l, . . . , u2(n− Nu)l,
. . . ,

. . . ,

ud(n), ud(n− 1), ud(n− 2), . . . , ud(n− Nu),
ud(n)2, ud(n− 1)2, ud(n− 2)2, . . . , ud(n− Nu)2,
. . . ,

ud(n)l, ud(n− 1)l, ud(n− 2)l, . . . , ud(n− Nu)l,
y(n− 1), y(n− 2), . . . , y(n− Ny),

y(n− 1)2, y(n− 2)2, . . . , y(n− Ny)2,
. . . ,

y(n− 1)l, y(n− 2)l, . . . , y(n− Ny)l)

where y(n) and u(n) are the sampled output and input signals at
time n, respectively, Ny and Nu are the regression orders of the
output and input, respectively, and d is the input dimension. f ()
is a nonlinear function, this is typically taken to be a polynomial or
wavelet multi-resolution expansion of the arguments. The degree
l of the polynomial is the highest sum of powers in any of its terms.
Any data set that we intend to model is first split in two sets

(usually of equal size). We call the first the estimation data set
and it is used to determine the model structure and parameters:
basically the model parameters are determined trying to minimise
the difference (mean-squared error) between the model predicted
output and the actual one. The remaining data set is called the
validation data set and it is used to validate the model.
The structure of the NARMAX polynomial is determined by the

inputs u, the output y, the input and output orders Nu and Ny,
respectively, and the degree l of the polynomial. The problem is
that the number of initial terms of the NARMAXmodel polynomial
can be very large depending on these variables, but not all of
these terms are significant contributors to the computation of
the output. In order to remove the nonrelevant terms, the Error
Reduction Ratio (ERR) [8] is computed for each term. The ERR
of a term is the percentage reduction in the total mean-squared
error (i.e. the difference betweenmodel-predicted and true system

Fig. 2. Location of each sonar and infrared sensor in the Magellan Pro Robot we
used in our experiments. The laser sensors have been averaged in twelve sectors of
15 degrees each (laser bins).

output) as a result of including (in the model equation) the term
under consideration. The bigger the ERR is, the more significant
the term. Model terms with ERR under a certain threshold (usually
around 0.05%) are removed from the model polynomial.

3. Route learning by demonstration

We applied our robot training strategy to program a reactive
route following controller (Fig. 1). Although this route looks quite
simple, it is actually quite difficult to learn due to the lack of
landmarks in the environment. The sensor readingswhen the robot
is in the middle of the route (labelled A in Fig. 1) are very similar
but half of the time the robot has to turn right, while the other half
it has to turn left. In order to learn this route aMagellan Pro Robot
was first steered for 1 hour along the desired route by a human
operator (Fig. 1, left). During this stage sensor perceptions (Fig. 2),
position, transitional and rotational velocities were recorded every
250 ms.
Having logged speeds and perceptions, we identified the robot’s

movement using the NARMAX process, taking all sonar and laser
measurements as inputs to the modelling process (Fig. 3). Laser
ranges were averaged in twelve sectors of 15 degrees each (laser
bins), resulting in a twelve-dimensional vector of laser-distances.
Both laser bins and the 16 sonar sensor values were inverted and
normalised, so that large readings indicate close-by objects. The
resulting NARMAXmodel is shown in Table 1. The model was then
used to control the robot directly (Fig. 1, right).
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