Robotics and Autonomous Systems 76 (2016) 80-92

Robotics and Autonomous Systems

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/robot

Concurrent controller and Simulator Neural Network development
for a differentially-steered robot in Evolutionary Robotics

@ CrossMark

Grant W. Woodford **, Christiaan J. Pretorius®, Mathys C. du Plessis?

2 Department of Computing Sciences, Nelson Mandela Metropolitan University (NMMU), Port Elizabeth, South Africa
b Department of Mathematics and Applied Mathematics, Nelson Mandela Metropolitan University (NMMU), Port Elizabeth, South Africa

HIGHLIGHTS

Controllers are developed for trajectory planning using Evolutionary Robotics and a differentially-steered mobile robot.
A novel approach is proposed for the concurrent development of controllers and a simulator.

Robot behaviours are simulated using Artificial Neural Networks.

An extensive parameter comparison study of the proposed approach is conducted.

ARTICLE INFO

Article history:

Received 13 March 2015

Received in revised form

12 October 2015

Accepted 23 October 2015
Available online 19 November 2015

Keywords:

Evolutionary Robotics
Coevolution

Simulator

Artificial Neural Networks
Differentially-Steered
Mobile robotics

ABSTRACT

Evolutionary Robotics (ER) strives for the automatic creation of robotic controllers and morphologies.
The ER process is normally performed in simulation in order to reduce the time required and robot
wear. Simulator development is a time consuming process which requires expert knowledge and must
traditionally be completed before the ER process can commence. Traditional simulators have limited
accuracy, can be computationally expensive and typically do not account for minor operational differences
between physical robots.

This research proposes the automatic creation of simulators concurrently with the normal ER process.
The simulator is derived from an Artificial Neural Network (ANN) to remove the need for formulating an
analytical model for the robot. The ANN simulator is improved concurrently with the ER process through
real-world controller evaluations which continuously generate behavioural data. Simultaneously, the
ER process is informed by the improving simulator to evolve better controllers which are periodically
evaluated in the real-world. Hence, the concurrent processes provide further targeted behavioural data
for simulator improvement.

The concurrent and real-time creation of both controllers and ANN-based simulators is successfully
demonstrated for a differentially-steered mobile robot. Various parameter settings in the proposed
algorithm are investigated to determine factors pertinent to the success of the proposed approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

creation. As robots, environments and tasks become more com-
plex, the manual creation of controllers becomes more infeasi-

Evolutionary Robotics (ER) is a field of study that involves the
automatic artificial evolution and optimization of particular traits
of autonomous robotic systems [1]. ER seeks to automate the de-
velopment of robot controllers and morphologies through the use
of Evolutionary Computation as an alternative to their manual

* Corresponding author.
E-mail addresses: grant.woodford@nmmu.ac.za (G.W. Woodford),
cpretorius@nmmu.ac.za (C.J. Pretorius), mc.duplessis@nmmu.ac.za
(M.C. du Plessis).

http://dx.doi.org/10.1016/j.robot.2015.10.011
0921-8890/© 2015 Elsevier B.V. All rights reserved.

ble [2]. ER can be used to evolve robot behaviours such that path
following, inverted pendulum stabilization, light following, obsta-
cle avoidance and many others [3,4]. In ER, controllers need to be
evaluated to quantify the relative performance of each controller
at performing a given task. ER requires the evaluation of a large
number of controllers in order to evolve better ones. However,
evaluating a large number of controllers on a real-world robot is
unrealistically time-consuming and can damage hardware through
mechanical wear [5]. To overcome these issues, simulators serve
as an alternative to reality for evaluating controller performance
in the ER process [5].

http://dx.doi.org/10.1016/j.robot.2015.10.011
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2015.10.011&domain=pdf
mailto:grant.woodford@nmmu.ac.za
mailto:cpretorius@nmmu.ac.za
mailto:mc.duplessis@nmmu.ac.za
http://dx.doi.org/10.1016/j.robot.2015.10.011

G.W. Woodford et al. / Robotics and Autonomous Systems 76 (2016) 80-92 81

There are many different types of simulators. Simulators can
be broadly classified into three categories, namely physics based
simulators, empirical models (based on experimentally collected
data) and hybrids which are a combination of both physics and
empirical models [3]. Traditional methods for creating simulators
are often time-consuming and complicated because it may require
the construction and tuning of complex physics based models or
the collection of large amounts of real-world data or both.

Much research in ER is concerned with overcoming the chal-
lenges in using simulators effectively [1]. Challenges in simulator
design are inaccuracies and/or over-simplification in the mod-
elling of certain phenomena. Oversimplified or inaccurate simula-
tors may result in controllers that rely too heavily on peculiarities
that exist only in simulation but are not present when the con-
troller is evaluated in reality, commonly referred to as the real-
ity gap problem [6]. Oversimplification can be avoided by using
highly accurate simulators. However, even highly accurate simu-
lators cannot model reality perfectly and will inevitably contain
inaccuracies [7]. Highly accurate simulators can also be computa-
tionally expensive [8]. Scalability can become an issue where the
time taken to evaluate controllers can grow substantially with in-
creased complexity in the robotic system [1,9]. Thus, simulators
ideally need to provide highly accurate representations of reality
whilst not being too computationally expensive to operate.

Pretorius, du Plessis and Cilliers [10] have shown that Artificial
Neural Networks (ANN) can be utilized as simulators in the
ER process. A simulator created using ANNs shall be referred
to as a Simulator Neural Network (SNN). SNNs have been
shown to possess good prediction accuracy, noise-tolerance
and generalization abilities in the modelling of certain robot
behaviours [3]. SNNs are computationally efficient and can be
created without the need for specialized knowledge about the
dynamics of the robotic system. It has also been shown that SNNs
can aid in the successful transference of controller behaviour from
simulation to reality [3].

Previous approaches to SNN construction required the gath-
ering of large quantities of data from real-world robot behaviour
which can be used to train SNNs before the ER process begins.
This development of simulators before controllers are evolved is
time-consuming. The robot generates the behavioural data by eval-
uating randomly generated commands. However, if only certain
behaviours need to be modelled then much of this behavioural data
is unnecessary. A simulator could specialize in accurately mod-
elling only the behaviour required to perform a given task and thus
require mostly behavioural data specific to the desired behaviour.

As an alternative to the traditional approach to SNN creation,
the current work aims to investigate the concurrent creation
of SNNs and controllers in the ER process. This approach could
potentially speed up the process by eliminating the need to pre-
compute SNNs. The SNNs would be specialized to accurately model
only behaviours required for a given task and therefore require less
empirical data for their development than the previous approach.
There could also potentially be further advantages warranting
investigation such as the ability to adapt to changing environments
and robots. Automatic damage recovery capabilities could also be
possible since the simulator is no longer static.

The related work (Section 2) gives an outline of some of
the work previously done in this area. The proposed approach
of concurrent simulator and controller development is outlined
in Section 3. The evaluation methodology and experimental
procedure used for investigating the proposed approach are
then discussed in Sections 4 and 5, respectively. The results
of the experimental work are presented (Section 6) and finally
conclusions are drawn and future work is suggested (Section 7).

2. Related work

This section reviews important approaches in the development
of simulators and controllers for the ER process. Section 2.1
discusses related work with regard to concurrent controller and
simulator development. Section 2.2 discusses the development
and use of SNNs in ER.

2.1. Concurrent controller and simulator development

One approach to dealing with the reality gap problem described
in Section 1 is to evolve controllers on real-world hardware
only [11]. On the other hand, a combined approach can be taken
where controllers are evolved in simulation then transferred to a
real-world robot where the ER process continues in reality [12].

The one directional transference of a controller from simulation
to reality can also be replaced by a more bidirectional approach [1].
There have been many proposals for bidirectional approaches that
allow the optimization process to alternate between the simulator
and real-world [5,13-15].

A robot’s behaviour is affected not only by its controller
but also by the robot’s morphology. A coevolutionary approach
can be taken where controllers and robot morphologies are
improved together [16,17]. Evolving a robot’s morphology usually
necessitates changing the model of what the robot looks like and
evolving the physics model parameters of the simulator [14,18]. If
a robot’s model is fixed, then only the physics model parameters
of the simulator could be evolved. Work related to coevolutionary
approaches to controller and simulator development are thus
important.

One example of the coevolution of simulator model parameters
and controllers is the Anytime Learning Algorithm [13]. Anytime
learning proposes a population of model parameters and a
population of controllers. These populations are evolved by means
of a Genetic Algorithm (GA). A population of model parameters
is maintained and judged against real-world data to determine
their accuracy. The most accurate model parameters are used for
controller evolution.

Bongard, Zykov and Lipson [14] proposed the Estimation-
Exploration Algorithm (EEA) that integrates robotic self modelling
into the ER process. The EEA is a hybrid coevolutionary algorithm
for maintaining populations of models of the robot system and a
population of test controllers used to explore the model search
space. Once a sufficiently accurate model has been found, it is used
to evolve controllers to achieve the required behaviour.

The Transferability Approach has also been proposed [15]. This
method does not attempt to evolve the simulator but rather
attempts to complement it. Simulators often have limitations in
the accurate modelling of certain phenomena in order to increase
computational performance [15]. If these limitations are known
during the ER process, controllers could avoid relying on dynamics
that have not been accurately simulated. The Transferability
Approach proposes a multi-objective fitness function of two
parts. One part estimates how well a solution may transfer from
simulation to reality (called the transferability function) and
another estimates how well the desired behaviour is achieved in
simulation [15]. The transferability function can be implemented
as an ANN or Support Vector Machine and may be trained
during the ER process. Controllers evaluated on a real-world robot
generate data that is utilized in the training of the transferability
function. Behavioural features that can be measured in simulation
and reality are identified and the transferability function is trained
to estimate how well these behaviours are simulated.

The Back to Reality (BTR) Algorithm concurrently evolves
controllers and simulators [5]. The BTR Algorithm collects the
fitness of controllers evaluated in simulation and reality. The

Download English Version:

https://daneshyari.com/en/article/412017

Download Persian Version:

https://daneshyari.com/article/412017

Daneshyari.com

https://daneshyari.com/en/article/412017
https://daneshyari.com/article/412017
https://daneshyari.com

