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a b s t r a c t

In the context of object interaction and manipulation, one characteristic of a robust grasp is its ability
to comply with external perturbations applied to the grasped object while still maintaining the grasp. In
this work, we introduce an approach for grasp adaptation which learns a statistical model to adapt
hand posture solely based on the perceived contact between the object and fingers. Using a multi-step
learning procedure, the model dataset is built by first demonstrating an initial hand posture, which is
then physically corrected by a human teacher pressing on the fingertips, exploiting compliance in the
robot hand. The learner then replays the resulting sequence of hand postures, to generate a dataset of
posture–contact pairs that are not influenced by the touch of the teacher. A key feature of this work is
that the learned model may be further refined by repeating the correction–replay steps. Alternatively,
the model may be reused in the development of new models, characterized by the contact signatures
of a different object. Our approach is empirically validated on the iCub robot. We demonstrate grasp
adaptation in response to changes in contact, and show successful model reuse and improved adaptation
with additional rounds of model refinement.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Object interaction and manipulation is a challenging topic
within robotics research. When a detailed model of the object
shape and surface properties is known, one can reason about
grasp optimality. However, the prior knowledge requirement is
extensive – object properties like the mass distribution or surface
texture can be difficult to obtain, for example requiring force
sensors or accurate tactile sensing – and how these properties
change as the object is manipulated can be difficult to predict.
When detailed information about the object shape and surface
properties is not known, compromises like grasp sub-optimality
and a strong reliance on accurate runtime sensing must be made.
Object manipulation becomes even more challenging within the
context of dynamic interactions, when the grasp on the object is
not static.

In this work, the target behavior is grasp adaptation; that is,
the ability to be intentionally responsive to external forces so
as to comply smoothly with external perturbations, all while
maintaining contact with the object (Fig. 1(a)). The use of force
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or impedance feedback controllers offer robust solutions to the
goal of maintaining contact with an object; however, most
works do not consider the additional goal of being intentionally
compliant and to follow perturbations [1–4]. Smooth compliance
in response to object perturbations when grasping necessitates
a tight coordination between all fingers, else the grasped object
might fall from the hand. Moreover, this coordination is typically
ensured by a good knowledge of the hand kinematics and of the
object shape [5–8]. To tackle this issue, rather than handcraft
the coordination patterns across all fingers for each novel object,
we adopt a learning approach based on human demonstration.
The coordination patterns thus are extracted from a set of good
example grasps. The use of demonstration learning is motivated
further by the high-dimensionality of the task state-space, due to
the number of degrees of freedom in the fingers and the sensory
signals at play. Showing by example can simplify the specification
of coordinated postures between all of the fingers. If the examples
are shown kinesthetically, by physically touching the robot to
move its fingers, demonstration also allows the teacher to provide
the robot with an intuitive notion of force.

Our work takes the approach of learning a statistical model
able to predict a desired hand posture and fingertip pressure
from the current signature of the contact perceived at the
robot’s fingertips. The approach depends on tactile sensing at the
fingertips and human demonstration to provide an example set
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(a) Grasp adaptation to external perturbation.

(b) Policy development through refinement and reuse.

Fig. 1. (a) Grasp adaptation: When an external perturbation is applied on the object currently grasped by the robot, the robot dynamically adapts its grasp to comply with
the perturbation. (b) Overview of our approach for learning grasp adaptation skills: An adaptive model for maintaining a grasp in response to changing contacts is built and
updated (top→bottom) by having a teacher demonstrate a grasp and then refine the range of possible grasps for adaptation through corrective feedback (left column). Robot
self-demonstration (right column) is necessary for acquiring sensory information that is not influenced by the touch of the teacher. Furthermore, the development of a new
model that is responsive to a new object is also possible through model reuse.

of feasible grasps.1 The approach does not require any kinematic
nor dynamic model of the hand nor object, unlike model-based
manipulation approaches. Such requirements of a detailed model
and consequently, precise sensing capabilities, in practice canbe an
issue for many robotic platforms. Instead, the use of a probabilistic
model allows for the encapsulation of the intrinsic non-linear
mapping between the noisy tactile data and joint information,
obtained directly from example grasps.

The dataset of examples is built both from human demonstra-
tion, and from self-demonstration by the robot after correction by
a human teacher. In particular, our model derives from a multi-
step learning procedure, that iteratively builds a training dataset
from a combination of teacher demonstration, teacher correction

1 We assume the training dataset consists of only valid grasps, such that the
grasped object does not slip or fall from the hand, as ensured by the teacher’s
supervision.

and learner replay (Fig. 1(b)). Corrections are accomplished by hav-
ing the teacher directly act on the fingers of the robot. In con-
trast to other demonstration mechanisms like vision systems or
data gloves, we suggest that directly acting on the fingers allows
the human to detect the forces applied to the grasped object, and
thus to achieve a better demonstration of the applied forces. The
dataset also is built iteratively, as the teacher interactively cor-
rects the robot’s executions and thus refines the learned behavior.
A key distinction in our work when compared to other iterative
demonstration learning approaches [9–13] is the focus on pertur-
bations, that possibly take the execution far from what has been
shown in the demonstration set. Our novel formulation for avoid-
ing over-generalization also ensures that the robot’s response is
always valid with respect to the example dataset. Our corrections
furthermore aim not only to improve upon a demonstrated behav-
ior, but also to explicitly show additional flexibility and adaptation
beyond an executed pose.

Our approach is empirically validated on the iCub robot [14],
building contact models for multiple objects of different shapes
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