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a b s t r a c t

This paper investigates the global exponential synchronization problem in arrays of complex networks
with time delays based on the theory of calculus on time scales, Lyapunov functional and linear matrix
inequality technique, and derives several sufficient criteria to ensure the global exponential synchro-
nization for the considered networks. It is shown that the synchronization conditions of complex
dynamical networks on time scales are different from those derived for conventional continuous or
discrete complex networks. Moreover, the presented results of this paper indicate that the globally
synchronization problems with both discrete time case and continuous time case can be addressed in a
unified framework.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Networks are ubiquitous in the real world, such as Internet,
World Wide Web, social networks, ecosystems, and global eco-
nomic network. The topologies of complex networks have been
widely studied, since the topology property itself is very interesting,
and also, it shows great influence on the collective dynamics of
complex dynamic networks. As a typical collective behavior in
complex networks, synchronization or consensus problem has been
widely studied in the past few years [1–5]. In [1], Bauso et al.
studied the consensus for the networks with unknown but
bounded disturbances. The consensus problem in second- or
higher-order multi-agent systems was investigated in [2–4].
Obviously, there exist great benefit of having synchronization or
consensus in physics, biology or some engineering applications,
such as secure communication, image processing, harmonic oscilla-
tion generation, formation control and flocking [6–10]. In [6], Olfati-
Saber studied the flocking of multi-agent dynamic systems. In [7],
Barahona and Pecora introduced the synchronization in small-
world networks. Synchronization via pinning control on general
complex networks was discussed by Yu et al. in [9], and so on. The
synchronization in arrays of complex networks has attracted

increasing research attention in various research fields in recent
years. Both continuous-time synchronization [11–16] and discrete-
time synchronization [5,17,18] protocols have been extensively
studied in the previous literature. For continuous time system, in
[11], Cao et al. considered synchronization problem for an array of
delayed neural networks with hybrid coupling, in [14], Lu et al.
studied the exponential synchronization of linearly coupled neural
networks with impulsive disturbances, in [15], the chaos synchro-
nization is discussed for complex dynamical networks. The global
synchronization control of general delayed discrete-time networks
with stochastic coupling and disturbances was investigated in [17].
In [5], the synchronization criteria are derived for linearly coupled
networks of discrete time systems. The global synchronization for
discrete-time stochastic complex networks with randomly occurred
nonlinearities and mixed timedelays was studied in [18]. Hence,
most of the previous investigations dealt with synchronization
problems in continuous-time and discrete-time cases, respectively.
Obviously, it is not consistent with some real networked systems. In
real-world systems, the interaction among agents can happen at
any time, maybe some continuous time intervals accompanying
some discrete moments. So it is necessary and meaningful to
consider both continuous-time and discrete-time cases at the same
time in networked systems. In this paper, we will combine
continuous-time and discrete-time cases together and design the
consensus/synchronization protocols under a unified framework.
To overcome the aforementioned shortcomings, we will study
the globally exponential synchronization problems of complex
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networks by using the theory and method of time scales calculus in
this paper. And the results of the synchronization criteria are
desirable.

The theory of time scales has a tremendous potential for applica-
tions in some mathematical models of real processes and phenom-
ena studied in physics, population dynamics, biotechnology,
economics and so on. Empirical results show that the theory of time
scales is not only a pure theoretical field of mathematics but also a
useful tool to deal with many practical problems. The field of
dynamic equations on time scales contains links and extends the
classical theory of differential and difference equations. Recently, the
theory of time scale calculus has been applied in neural networks. In
[19], Chen and Du studied the global exponential stability of delayed
BAM networks on time scale. In [20] the consensus criteria are
derived for a class of multi-agent systems on time scales. Motivated
by the above-mentioned results, as an attempt, wewill study globally
exponential synchronization problems of complex dynamical net-
works on time scales in this paper.

2. Notations and preliminaries

In order to obtain the main results, some elementary notions
and lemmas in the theory of time scales are presented as follows.

In 1980s, Stefan Hilger initiated the theory of time scale
calculus. Bohner and Peterson developed and consummated it
[21–23]. This novel and fascinating type of mathematics is more
general and versatile than the traditional theories of differential
and difference equations as it can, under one framework, mathe-
matically describe continuous and discrete hybrid processes and
hence is the optimal way forward for accurate and malleable
mathematical modeling.

Throughout this paper, N and Z denote the positive integer
collection and integer collection, respectively. Rn and Rn�m denote
the n-dimensional Euclidean space and the set of all n�m real
matrices, respectively. T is a time scale. Set ½a; b�T≔ftAT; artrbg.
Tþ ¼ ftAT; tZ0g. P40 means that matrix P is real, symmetric and
positive definite. I and O denote the identity matrix and the zero
matrix with compatible dimensions, respectively; and diag f⋯g
stands for a block-diagonal matrix. The superscript ‘T’ stands for a
matrix transposition. The Kronecker product of matrices QARm�n

and RARp�q is a matrix in Rmp�nq and denoted as Q � R. Let τ40
and Cð½�τ;0�T;RnÞ denote the family of continuous functions φ
from ½�τ;0�T to Rn with the norm ‖φ‖¼ sup� τr θr0‖φðθÞ‖, where
‖ � ‖ is the Euclidean norm in Rn.

A time scale T is an arbitrary nonempty closed subset of the real set R
with the topology and ordering inherited from R. Assume that 0AT, T is
unbounded above, that is, sup T¼1. The forward and backward jump
operators σ; ρ : T-T and the graininess μ : T-Rþ are defined, respec-
tively, by σðtÞ≔inffsAT : s4tg; ρðtÞ≔supfsAT : sotg; μðtÞ≔σðtÞ�t.

We put inf∅≔supT and sup∅≔infT, where ∅ denotes the
empty set.

A point t is said to be left-dense if t4 infT and ρðtÞ ¼ t, right-
dense if tosupT and σðtÞ ¼ t, left-scattered if ρðtÞot and right-
scattered if σðtÞ4t. If T has a left-scattered maximum m, then we
define Tk to be T�fmg. Otherwise Tk ¼T.

A function f : T-R is called right-dense continuous provided it
is continuous at right-dense point of T and the left side limit exists
(finite) at left-dense point of T. The set of all right-dense
continuous functions on T is defined by Crd ¼ CrdðTÞ ¼ CrdðT;RÞ.

A function f : T-R is called regressive provided

1þμðtÞf ðtÞa0; 8 tAT:

Definition 2.1 (Bohner and Peterson [21]). For a function
f : T-R; tATk, the delta derivative of f(t), f ΔðtÞ, is the number (if

it exists) with the property that, for a given ε40, there exists a
neighborhood U of t such that

∣½f ðσðtÞÞ� f ðsÞ�� f ΔðtÞ½σðtÞ�s�∣oε∣σðtÞ�s∣;

for all sAU.

For all tATk, one can get

f ðσðtÞÞ ¼ f ðtÞþμðtÞf ΔðtÞ:
If f and g are two differentiable functions, then the product rule for
the derivative of product f � g is that

ðf � gÞΔ ¼ f Δ � gþ f σ � gΔ ¼ f Δ � gσþ f � gΔ:

Definition 2.2. A function F : Tk-R is called a delta-
antiderivative of f : T-R provided FΔ ¼ f holds for all tATk. In
this case, the integral of f is defined byZ t

a
f ðsÞ Δs¼ FðtÞ�FðaÞ for tAT:

Then we haveZ t

a
f ðsÞ Δs

� �Δ

¼ f ðtÞ for tATk:

Let A¼ ðaijÞ1r irm;1r jrn be anm�n-matrix-valued function on
T. We say that A is differentiable on T provided each entry of A is
differentiable on T. In this case, we put

AΔ ¼ ðaΔijÞ1r irm;1r jrn:

Similarly, we denote that Aσ ¼ ðaσijÞ.

Lemma 2.1 (Bohner and Peterson [21]). Suppose Φ and Ψ are
differentiable n�n-matrix-valued functions. Then

ð1Þ ðΦþΨ ÞΔ ¼ΦΔþΨΔ;
ð2Þ ðαΦÞΔ ¼ αΦΔ if α is a constant;

ð3Þ ðΦΨ ÞΔ ¼ΦΔΨσþΦΨΔ:

The addition ‘� ’ is defined by p � q≔pþqþμpq. The set of all
regressive functions on a time scale T forms an Abelian group under
the addition ‘� ’. The additive inverse in this group is denoted by
⊖p≔�p=ð1þμpÞ. Then the subtraction ⊖ on the set of regressive
functions is defined by p⊖q≔p � ð⊖pÞ. It can be shown easily that
p⊖q¼ �ðp�qÞ=ð1þμqÞ. The set of all regressive and right-dense
continuous functions will be denoted by R¼RðTÞ ¼RðT;RÞ.

We denote that Rþ ¼Rþ ðT;RÞ ¼ ff AR : 1þμðtÞf ðtÞ40;
for all tATg. Obviously, Rþ is the set of all positively regressive
elements of R. One can easily verify that if f ARþ , then ⊖f ARþ .

Definition 2.3. If pAR, then the generalized exponential function
epðt; sÞ is defined by

epðt; sÞ ¼ exp
Z t

s
ξμðτÞðpðτÞÞ Δτ

� �
for s; tAT

with the cylinder transformation

ξhðzÞ ¼
Log ð1þhzÞ

h
if ha0;

z if h¼ 0:

8<
:

If pAR, then the exponential function epðt; t0Þ is the only
solution of the initial value problem

yΔ ¼ py; yðt0Þ ¼ 1;

on a time scale T.
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