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a b s t r a c t

This study examines the sampled-data state estimation problem for genetic regulatory networks (GRNs)
with time-varying delays. Instead of the continuous measurements, the sampled measurements are used
to estimate the true concentration of mRNAs and proteins of the GRNs. By changing the sampling period
into a bounded time-varying delay, the error dynamics of the considered GRN is derived in terms of a
dynamical system with time-varying delays. Sufficient conditions are derived such that the augmented
system governing the error dynamics is globally asymptotically stable. The design of the desired state
estimator is proposed by constructing a suitable Lyapunov–Krasovskii functional (LKF), and the design
procedure can be easily achieved by solving a set of linear matrix inequalities (LMIs). Finally, the
proposed method is validated through the numerical simulation which shows the effectiveness the our
results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

During the past few years there are significant progress in the area
of gene engineering, neural networks and other biological sciences.
The mechanisms that have evolved to regulate the gene expression are
known as genetic regulatory networks (GRNs), here the expression of a
gene is regulated by its products. Because the biological characteristics
depend on coding information stored in genes, which greatly influ-
ences the biological propagation, inheritance and variation. In recent
years, GRNs have become an important area in biological and biom-
edical sciences and received great attention among the researchers,
see [4,6,10,22,23,29]. One of the main aim in systems biology has been
to understand the gene functions and regulations at the system level.
GRNs structured by networks of regulatory interactions between DNA,
RNA and proteins have played a key role in biological systems as they
explain the interactions between genes (mRNA) and proteins. Math-
ematical modeling and simulation tools help to understand how
complex GRNs, composed of many genes and their intertwined inter-
actions, control the functioning of living systems. They provide a
framework to unambiguously describe the network structure and

to infer predictions of the dynamical behavior of the system [7]. For
instance, how proteins are synthesized from genes as transcription
factors binding to regulatory sites of other genes, and how they
interact with each other and with other substances in the cells to
perform complicated biological functions. With the appearance and
development of DNA microarray technology, it is possible to measure
gene expression levels on a genomic scale and furthermore analyze
the gene regulatory network. Based on the statistic thermodynamics
and biochemical reaction principle [25], a GRN can be described by a
group of nonlinear differential [9,10]. In GRNs, mRNAs and proteins
may be synthesized at different locations (i.e., nucleus and cytoplasm,
respectively); thus, transportation or the diffusion of mRNAs and
proteins between these two locations results in sizable delays.

The study of GRN has got the interest of many researchers, many
notable researches have proposed different kinds of mathematical
models to describe GRN. So far, there are two basic methods conc-
erning GRN modeling: Boolean method and dynamical system
method using ordinary differential [2,5]. In Boolean models, the
expression of each gene in the network is assumed to be either ON or
OFF, no intermediate activity levels are ever taken into consideration,
and the state of a gene is determined by the Boolean function of the
states of other related genes [2]. While in the differential equation
model, variables which describe the change rates of the concentra-
tion of gene products, such as mRNAs and proteins, are continuous
values. The differential equation model excels the Boolean model for
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its more secured accuracy. Time delays arise frequently in many
dynamical systems such as economic systems, chemical processes,
and neural networks [11]. It is well known that time delays in GRNs
caused by transcription, translation, and translocation processes
because of the slow reaction process may cause oscillation, diver-
gence, and instability of the networks. Thus, GRNs with time delays
have been extensively studied, and many important and interesting
results have been proposed in terms of all sorts of methods [22,36].
GRN models are also unavoidably affected by modeling uncertainties,
including parametric error. In [26], the authors studied sufficient
conditions for the stochastic stability of the genetic networks with
disturbance attenuation. In [21], simple delay-independent and
delay-dependent conditions for disturbance analysis are developed
for a class of GRNs. Theoretical analysis and experimental investiga-
tion on GRNs have increasing attention, and a large amount of
important results making significant contributions for understanding
both static and dynamic behaviors of biological systems can be found
in [6,12,15,19,36] and references therein.

In practice, for the high-order complex system only partial infor-
mation about the gene states are available in the network outputs. For
instance, the state estimation problem for GRNs to approximate the
true concentrations of the mRNA and protein has been investigated in
a continuous-time manner [8,14,32,33]. Robust state estimation for
discrete-time stochastic GRNs with probabilistic measurement delays
is discussed in [35]. In [20], the state estimation problem has been
studied for a class of delayed recurrent neural networks with sampled-
data that has been derived to guarantee that the dynamics of the
estimation error is globally exponentially stable. The passivity based
exponential state estimation of switched Hopfield neural networks is
proposed in [1]. In [16], the state estimation problem has been
investigated for a class of GRNs with time-varying delays and
randomly occurring uncertainties. In [3], the state estimation problem
has been studied for a class of discrete-time GRNs with random delays.
The state estimation for delayed GRNs based on passivity theory has
been discussed in [34]. More recently, in [29] Sakthivel et al. proposed
the problem of robust state estimator design for a class of uncertain
discrete-time GRNs with time varying delays and randomly occurring
uncertainties.

It is worth mentioning that the approach to estimate the GRN
states through the output sampled measurement needs less informa-
tion from the network outputs, which can lead to a significant
reduction of the information communication burden in the network.
So, in GRNs, it is important to investigate the effect of sampling errors
on the estimation of state variables by selecting the proper sampling
interval. In the literature, there are some results about the state
estimation problems based on sampled-data approach; in [17,27,28]
the sampled-data state estimation of neural networks is discussed.
Further, Lee et al. [18] studied the stochastic sampled-data control for
state estimation of neural networks and Hu et al. [13] investigated the
sampled-data state estimation of delayed neural networks with
Markovian jumping parameters. Very recently, the sampled-data state
estimation of neural networks of neutral type has been investigated in
[37]. To the best of our knowledge, the sampled-data state estimation
problem of GRNs has not been addressed so far.

Motivated by the above facts, in this paper, the problem of state
estimation of GRNs with time varying delays using sampled measure-
ments has been considered. Unlike previous studies, the states of the
proposed GRNs were estimated using the sampled-data with sampling
period. The main novelty of this paper lies in the following aspects:
(1) a new sampled-data state estimation problem is addressed for
delayed genetic regulatory networks. (2) Instead of continuous mea-
surements, a set of state estimators is constructed based on the
sampled measurements, a sampled-data state estimator is derived. (3)
The sampling period is converted equivalently into a time-varying but
bounded delay by using the input delay approach, and then the
considered GRN is derived in terms of a differential equation with two

different time-delays. By utilizing an appropriate LKF, Jensen's inequal-
ities and Schur complement, the desired estimators of neuron states
are designed in terms of the solution to a certain set of LMIs. Then, the
estimator gains are described in terms of the solution to a set of LMIs,
which can be solved by MATLAB LMI control toolbox. Finally, a
numerical example and its simulations are exploited to demonstrate
the usefulness and effectiveness of the presented results.

1.1. Notations

Throughout this paper, the superscripts T and ð�1Þ stand for
matrix transposition and matrix inverse respectively; Rn�n denotes
the n�n-dimensional Euclidean space; the notation P40 means
that P is real, symmetric and positive definite; I and 0 denote the
identity matrix and zero matrix with compatible dimensions; diagf:g
stands for a block-diagonal matrix; we use an asterisk (n) to
represents a term that is induced by symmetry and symðAÞ is defined
as AþAT . Matrices which are not explicitly stated are assumed to be
compatible for matrix multiplications.

2. Problem formulation and preliminaries

Consider the following GRNs with time-varying delays:

_~m ðtÞ ¼ �A ~mðtÞþC ~gð~rðt�τðtÞÞÞþ JðtÞ;
_~r ðtÞ ¼ �B~rðtÞþD ~mðt�σðtÞÞ;

(
ð1Þ

where ~mðtÞ ¼ ½ ~m1ðtÞ; ~m2ðtÞ;…; ~mnðtÞ�T ARn, ~rðtÞ ¼ ½~r1ðtÞ; ~r2ðtÞ;…;
~rnðtÞ�T ARn; ~miðtÞ; ~r iðtÞAR are the concentrations of mRNAs and
proteins, respectively; A¼ diagfa1; a2;…; ang and C ¼ diagfc1; c2;…;

cng are constant matrices implying the rates of degradation;
D¼ diagfd1; d2;…; dng represents the translation rate; B¼ ðbijÞn�n is
the coupling matrix of the genetic networks; the feedback regulation
function of protein on transcription is denoted by the nonlinear
function ~gð~rðtÞÞ ¼ diagf ~g1ð~rðtÞÞ; ~g2ð~rðtÞÞ;…; ~gnð~rðtÞÞgT , which is the
monotonic function in Hill form, i.e. ~gið~rðtÞÞ ¼ ~rhi=ð1þ ~rhi Þ where
hi is the Hill coefficient; JðtÞ ¼ ½J1ðtÞ; J2ðtÞ;…; JnðtÞ�T denotes the basal
rates of degradation; σðtÞ and τðtÞ are the time-varying delays which
satisfies

0rσ1rσðtÞrσ2; _σðtÞrμ1 and
0rτ1rτðtÞrτ2; _τðtÞrμ2: ð2Þ
where σ1, σ2, μ1, τ1, τ2, μ2 are known constants. The time-varying
delays are assumed to be differentiable and bounded.

Let ð ~mn; ~rnÞ be the equilibrium point of system (1), then switch
the equilibrium of system (1) to the origin by the transformation
xðtÞ ¼ ~mðtÞ� ~mn and yðtÞ ¼ ~rðtÞ� ~rn. Hence, model (1) is trans-
formed into the following form:

_xðtÞ ¼ �AxðtÞþBgðyðt�τðtÞÞÞ;
_yðtÞ ¼ �CyðtÞþDxðt�σðtÞÞ;

(
ð3Þ

where gfy½t�τðtÞ�g ¼ ~gf~r ½t�τðtÞ�þ ~rng� ~gð~rnÞ.
(A1) The regulation function satisfies the following assump-

tion:

gðyÞðgðyÞ�WyÞr0; ð4Þ
where W ¼ diagfw1;w2;…;wng.

In high-order complex systems, it is known that only partial
information about the network components are known. Therefore,
in order to get the true state of the GRNs, one would need to
estimate them from the available measurements. For this, we
define the network measurements as follows:

zxðtÞ ¼MxðtÞ;
zyðtÞ ¼NyðtÞ;

(
ð5Þ
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