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a b s t r a c t

This paper investigates the average consensus problems of the discrete-time linear multi-agent systems
(LMAS) with Markov switching topologies. The average consensus protocol is a time-delay feedback
switching controller. Compared with existing controllers, it is switching with time-delay. The constant
time-delay exists in the signal feedback, and the time-varying time-delay exists in the state feedback.
Firstly, we introduce a concept of the average consensus in this stochastic system. Then, we develop a
new signal mode to simplify this challenging problem. By Lyapunov technique, two LMIs determinate
theorems of average consensus are provided. Then we can find a controller to solve such problems
effectively by these theorems. And the last theorem also reveals that we can determinate consensus by
the maximum and minimum nonzero eigenvalues of the Laplacian matrices. Finally, a numerical
example is given to illustrate the efficiency of our results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the consensus problems of multi-agent systems
have attracted intensive attention in the literature, because it has
been demonstrated that the consensus problems have a variety of
applications in various areas including formation control [1], syn-
chronization [2], flocking [3] and sensor networks [4]. However, most
of the consensus problems have been mainly concerned with agents
which are modeled by a no-self-driven dynamics [5–7]. In other
words, the dynamic of the agent is the controller. Without control,
the state of the agent will be a constant vector.

Recently, research interest in multi-agent systems has been
devoted to the linear multi-agent systems (LMAS), i.e., the agents
are modeled by linear systems. Several researchers considered the
leader-following consensus [8,9], the output regulation problem
[10], the distributed containment control problem [11], the event-
based consensus problem [12], LMAS with both missing measure-
ments and parameter uncertainties [13] and selecting leader
agents [14]. Most works of the consensus problems in the LMAS
focused on the continuous-time dynamics [10–12,14]. Results
about the discrete-time dynamics are less [9,8]. In this paper, we
investigate the consensus problems of the discrete-time LMAS.

Consensus problems of nonlinear multi-agent systems [15] will be
further studied in the later work.

Switching phenomenon widely exists in the real world. Due to
the nodes of network are moving, the communication link
between two agents may disappear or reestablish. Consider to
this, we assume that the communication topologies are Markov
switching in this paper. Many papers also investigated the con-
sensus problems of the multi-agent systems with switching
topology [5,16]. Refs. [9,17] studied that on LMAS, but they
assumed that the state matrix is stable. Different from above
papers, the state matrix and the input matrix are unconstrained,
and the feedback controller is Markov switching with time-delay
in this paper. To the best of our knowledge, there have been few
reports that solve this problem by Markov switching controller.

Time-delays are frequently encountered in practical systems
such as engineering, communications and biological systems.
Ref. [18] solved the consensus problems of LMAS by a time-delay
feedback controller, and the time-delay is constant. But, in the
feedback switching controller, time-delays may occur in the feed-
back of the switching signal also. For this reason, we design the
controller by state and signal feedbacks with time-delay. We
assume that the state feedback is time varying time-delay, and
the signal feedback is constant time-delay. This is a new controller
for LMAS, and the study is full of challenging.

The rest of this paper is organized as follows. Section 2
introduces some graph knowledge and property of Kronecker
product. Section 2.2 presents the consensus problem of discrete-
time LMAS with Markov switching topologies, and defines the
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average consensus of the stochastic systems. In Section 3, we give
two sufficient conditions of consensus. By these theorems we can
find a controller such that the LMAS is average consensus. Section 4
gives a numerical example to illustrate the efficiency of our results.
Concluding remarks are finally stated in Section 5.

Notation: The following notation will be used throughout this
paper. 1 ð0Þ is a compatible dimension vector with all elements to
be one (zero). IN is the N�N-dimensional identity matrix, and I is
the identity matrix of compatible dimensions. The notation n

always denotes the symmetric block in one symmetric matrix.
The transpose of matrix A is denoted by AT. The shorthand diagf⋯g
denotes the block diagonal matrix. J � J refers to the Euclidean
norm for vectors. Eð�Þ stands for the mathematical expectation
operator. � denotes the Kronecker product of matrices. Some
properties of Kronecker product are useful in this paper:
ðA � BÞT ¼ AT � BT , ðA � BÞðC � DÞ ¼ ðACÞ � ðBDÞ, A � BþA � C ¼
A � ðBþCÞ.

2. Preliminaries and problem formulations

In this section, we introduce some basic concepts in graph
theory (more information is available in [19]), and the average
consensus problems in stochastic systems.

2.1. Preliminary

Let G¼ ðV; E;AÞ be a graph of order N, where V ¼ fν1;ν2;…;νNg
is the set of nodes, EAV � V is the set of edges, and A¼ ðaijÞN�N is
the weighted adjacency matrix. The node indexes belong to a finite
index set I ¼ f1;2;…;Ng. ði; jÞAE denotes there is a edge connect νi
and νj, and νi can receive information from νj. In the following, it is
stipulated that ði; jÞAE if and only if aij40 and aii ¼ 0 for iAI . G is
called an undirected graph, if aij ¼ aji for all i; jAI . If there exists a
sequence of edges ði; i1Þ; ði1; i2Þ;…; ðik; jÞAE for any two agents
i; jAI , G is called a connected graph.

The matrix L¼ ðlijÞN�N is the Laplacian matrix of G, where

lij ¼
�aij ia j

∑
N

k ¼ 1
aik i¼ j:

8><
>:

Lemma 1 (Godsil et al. [19]). Let G¼ ðV; E;AÞ be a weighted
undirected graph with Laplacian L, and λ1r⋯rλN be the eigenva-
lues of L. If G is connected, 0¼ λ1oλ2r⋯rλN.

In a multi-agent network with N agents, the information flow
between agents can be described by a graph G¼ ðV; E;AÞ. The node
νi in graph G corresponds to agent i in the networks. ði; jÞAE
expresses that the information of the agent j can be spread to
agent i.

2.2. Consensus problems on Markov switching graphs

This paper considers the consensus problems of discrete-time
LMAS with Markov switching topologies. We assume that the set of
nodes are invariant, and the edges may disappear or reestablish with
the switching of the topologies. Then we denote the switching
topologies as GðrðkÞÞ ¼ ðV; EðrðkÞÞ;AðrðkÞÞÞ, where frðkÞ; kAZþ g is a
discrete-time Markov chain, with finite state space Υ ¼ f0;1;
…; d�1g. The state transition matrices of frðkÞg are P ¼ ðpijÞ, where
pij ¼ Prfrðkþ1Þ ¼ jjrðkÞ ¼ igZ0, for i; jAΥ , denote the transition
probability from i to j. In this paper, all systems are defined on a
complete probability space ðΩ; F; PÞ. For all υAΥ , the Laplacian matrix
of GðυÞ is denoted by LðυÞ.

Assumption 1. For all νAΥ , GðυÞ is undirected and connected.
Then the eigenvalues of LðυÞ can be denoted by 0¼ λ1ðυÞoλ2
ðυÞr⋯rλNðυÞ.

The dynamics of all agents are discrete-time linear systems:

xiðkþ1Þ ¼ AxiðkÞþBuiðkÞ; iAI ; ð1Þ
where xiðkÞARn and uiðkÞARm represent the state and the control
input of agent i respectively. AARn�n and BARn�m are the state
and the input matrix respectively. And the average consensus
protocol is designed as

uiðkÞ ¼ Kðrðk�τÞÞ ∑
N

j ¼ 1
aijðrðkÞÞðxjðk�σðkÞÞ�xiðk�σðkÞÞÞ; iAI ; ð2Þ

where KðυÞARm�n, for all υAΥ , is the gain matrix to be designed.
τAN is a constant delay occurring in the mode signal r(k). σðkÞAN

is the time-varying delay of the state feedback, and satisfies
σminrσðkÞrσmax, where σmin;σmaxAN are constants. Denote
σh ¼ σmax�σmin.

Let xðkÞ ¼ ½xT1ðkÞ;…; xTNðkÞ�T . Then systems (1) under the protocol
(2) can be written as

xðkþ1Þ ¼ IN � AxðkÞ�LðrðkÞÞ � BKðrðk�τÞÞxðk�σðkÞÞ: ð3Þ
We define the center of x(k) as xðkÞ9 ð1=NÞ∑N

i ¼ 1xiðkÞ. Since
1TLðυÞ ¼ 0T , for all υAΥ , the following property of the center in
the systems (3) is in force:

xðkþ1Þ ¼ 1
N
ð1T � InÞxðkþ1Þ ¼ AxðkÞ: ð4Þ

In this paper, the main problem of interest is to get the
determinate conditions of the average consensus in the stochastic
multi-agent systems (3). Inspired by [20], the definition of average
consensus is given as follows.

Definition 1 (Mean Square Average Consensus, MSAC). Multi-agent
systems (1) under the protocol (2) are said to reach a MSAC, if

lim
k-1

Ef‖xiðkÞ�xðkÞ‖2jx0; r0g ¼ 0; iAI ;

for any initial conditions x0 ¼ fxð�σmaxÞ; xð�σmaxþ1Þ;…; xð0Þg and
r0 ¼ frð�τÞ; xð�τþ1Þ;…; xð0Þg.

3. The main results

Inspired by [21,22], we extend the state space of switching
signal in the beginning.

Let Υτþ1 ¼Υ � Υ �⋯� Υ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
τþ1

, and define a vector switching signal

sðkÞ ¼ ½rðkÞ; rðk�1Þ;…; rðk�τÞ�T with finite state space Υτþ1. The
transition probability from ν to η denotes as ~pνη, for any

ν;ηAΥτþ1. For any ν¼ ½ν0;ν�1;…;ν� τ�T , η¼ ½η0;η� 1;…;

η�τ�T AΥ τþ1, we can get ~pνη ¼ pν0η0 , if ½ν0;…; ν� τþ1�T ¼ ½η�1;…
;η� τ�T , otherwise ~pνη ¼ 0.

Furthermore, let ~LðsðkÞÞ9LðrðkÞÞ and ~K ðsðkÞÞ9Kðrðk�τÞÞ. Then
system (3) can be written as

xðkþ1Þ ¼ IN � AxðkÞ� ~LðsðkÞÞ � B ~K ðsðkÞÞxðk�σðkÞÞ: ð5Þ

Lemma 2. The system (5) reaches a MSAC if and only if the system
(6) satisfies limk-1Ef‖yðkÞ‖2jx0; r0g ¼ 0 for any initial conditions x0,
r0, where LðνÞ is a symmetric matrix with the eigenvalues
λ2ðν0Þ;…; λNðν0Þ, for all ν¼ ½ν0;ν�1;…;ν� τ�T AΥτþ1.

yðkþ1Þ ¼ IN�1 � AyðkÞ�LðsðkÞÞ � B ~K ðsðkÞÞyðk�σðkÞÞ ð6Þ

Proof. We define δiðkÞ9xiðkÞ�xðkÞ, iAI , and δðkÞ ¼ ½δT1ðkÞ;
…; δTNðkÞ�T . So the multi-agent systems (5) reach a MSAC, if and
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