
Mean-square exponential stability for stochastic discrete-time
recurrent neural networks with mixed time delays$

Jian-Ning Li a, Lin-Sheng Li b,n

a School of Automation, Hangzhou Dianzi University, Hangzhou 310018, PR China
b Taiyuan University of Science and Technology, Taiyuan 030024, PR China

a r t i c l e i n f o

Article history:
Received 19 May 2014
Received in revised form
1 September 2014
Accepted 9 October 2014
Communicated by Guang Wu Zheng
Available online 27 October 2014

Keywords:
Discrete-time recurrent neural networks
Mixed time-delays
Mean-square exponential stability
Stochastic system
Linear matrix inequalities (LMIs)

a b s t r a c t

In this paper, the mean-square exponential stability problem for discrete-time recurrent neural
networks with time-varying discrete and distributed delays is investigated. Considering the delay
distributions, a novel class of Lyapunov functional is introduced. By exploiting all possible information in
mixed time delays, a sufficient condition for the whole system to be mean-square exponentially stable is
given. Numerical examples are proposed to illustrate the effectiveness of the method, and show that by
using the approach in this paper, the obtained results are less conservative than the existing ones.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Within the past few decades, recurrent neural networks have
received considerable attraction due to their wide potential
applications in some areas, such as signal processing, pattern
recognition, associative memories and optimization [1–3]. It is
well known that stability is one of the preconditions for some
optimization problems. With the development of computer tech-
nology, discrete-time recurrent neural networks are much more
suitable to our digital life than continuous-time recurrent neural
networks [4,5]. Besides, time-delays are inevitable in most recur-
rent neural networks, and they are the potential sources of
instability and oscillation [6,7]. Therefore, the stability analysis of
discrete-time delayed recurrent neural networks is an important
issue, the corresponding studies can be found in [11,12] and the
references therein. In [11], the discrete recurrent neural network
system was modeled as a kind of stochastic system with time-
varying delays and stochastic disturbance, then, a stability crite-
rion was given via Lyapunov functional. In [12], without the
traditional assumptions on the boundedness, monotony and

differentiability of the activation functions, the free-weight matrix
technology was used to get the stability condition of discrete-time
recurrent neural networks, furthermore, the globally exponential
stability criterion of the whole system was given.

On the other hand, another type of time-delay has attracted
considerable interest, namely, distributed delay, that is because neural
network usually has a spatial nature and there presence of an amount
of parallel pathways with a variety of axon sizes and lengths [9].
Recently, several interesting research results for neural networks with
mixed time delays have obtained, in [17], the stability analysis for a
kind of neutral systems with sector-bounded nonlinearity and mixed
time delays was given. Besides, the research on stochastic neural
networks with Markovian jump parameters and mixed time delays
was introduced in [18]. For recurrent neural network with multiple
discrete delays and distributed delays, sufficient conditions for check-
ing the global asymptotical stability of such systems were given via
LMI in [19]. Best to the author's knowledge, the mean-square expo-
nential stability analysis for recurrent neural networks with mixed
time-delays has received little attention in the literature.

Motivated by the delay-distribution-dependent technology [20],
the mean-square exponential stability criterion of discrete-time
recurrent neural networks with discrete and distributed delays is
investigated in this paper. Firstly, considering the delay distribution
probability, the recurrent neural network is modeled as a kind of
stochastic system and the stochastic variable is assumed to satisfy
Bernoulli process. Then, a less conservative result is obtained via a
novel class of Lyapunov functional, and the mean-square exponential
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stability criterion is given. Lastly, numerical examples are provided to
show the effectiveness of proposed result.

Notation: Throughout the paper, Rn and Rn�m denote the
n- dimensional Euclidean space and the set of all n�m real
matrices, respectively. The superscript “T” denotes the matrix
transposition. The notation XZY(or X4Y) means that X and Y
are symmetric matrices and X�Y is positive semidefinite (or
positive definite). ‖ � ‖ is the Euclidean norm in Rn.

2. Model formulation and preliminaries

Consider the following discrete-time recurrent neural network
with time-varying delays:

xðkþ1Þ ¼ CxðkÞþAFðxðkÞÞþBGðxðk�τðkÞÞÞþD ∑
þ1

m ¼ 1
μmαðxðk�mÞÞþ J

ð1Þ
where xðkÞ ¼ x1ðkÞ; x2ðkÞ;…; xnðkÞ

� �
ARn is the neural state vector,

xi(k) is the state of the ith neuron at time k; C ¼ diagfc1; c2;…; cng is
the state feedback coefficient matrix ðJci Jo1Þ; AARn�n is the
connection weight matrix, BARn�n is the discretely delayed
connection weight matrix and DARn�n is the system coefficient
matrix; J ¼ J1; J2;…; Jn

� �T ARn is the exogenous input; FðxðkÞÞ and
GðxðkÞÞ are the neuron activation functions, αðxðkÞÞ is nonlinear
function, and satisfy

FðxðkÞÞ ¼ F1ðx1ðkÞÞ; F2ðx2ðkÞÞ;…; FnðxnðkÞÞ
� �T

ARn

GðxðkÞÞ ¼ G1ðx1ðkÞÞ;G2ðx2ðkÞÞ;…;GnðxnðkÞÞ
� �T

ARn

αðxðkÞÞ ¼ α1ðx1ðkÞÞ;α2ðx2ðkÞÞ;…;αnðxnðkÞÞ
� �T

ARn

Besides, τðkÞ denotes the discrete time-varying delay, and
τmrτðkÞrτM , where τm and τM are the maximum and minimum
of the allowable time delay bound, respectively. μm is a nonnega-
tive constant and satisfies the convergent conditions [9], as

∑
þ1

m ¼ 1
μmoþ1; ∑

þ1

m ¼ 1
mμmoþ1 ð2Þ

Throughout the paper, the following assumptions are needed:

Assumption 1. For any x; yAR ðxayÞ, iAf1;2;…;ng, the activa-
tion functions FðxðkÞÞ, GðxðkÞÞ and nonlinear function αðxðkÞÞ satisfy

f �i rFiðxÞ�FiðyÞ
x�y

r f þi ; g�
i rGiðxÞ�GiðyÞ

x�y
rgþ

i ; α�
i rαiðxÞ�αiðyÞ

x�y
rαþ

i

where f �i , f þi , g�
i , gþ

i , α�
i and αþ

i are constants.

Under Assumption 1, [8] had got the results that the system has
equilibrium point, define the equilibrium point as xn and denote
yðkÞ ¼ xðkÞ�xn, system (1) with stochastic disturbances can be written
as

yðkþ1Þ ¼ CyðkÞþAf ðyðkÞÞþBgðyðk�τðkÞÞÞþD ∑
þ1

m ¼ 1
μmβðyðk�mÞÞ

þσðk; yðkÞ; yðk�τðkÞÞÞωðkÞ ð3Þ
where yðkÞ ¼ y1ðkÞ; y2ðkÞ; y3ðkÞ;…; ynðkÞ

� �T , f ðyðkÞÞ ¼ FðxðkÞÞ�FðxnÞ,
gðyðkÞÞ ¼ GðxðkÞÞ�GðxnÞ, βðyðkÞÞ ¼ αðxðkÞÞ�αðxnÞ. From Assumption
1, it is not difficult to conclude that

f �i r f iðxÞ� f iðyÞ
x�y

r f þi ; g�
i rgiðxÞ�giðyÞ

x�y
rgþ

i ; α�
i rβiðxÞ�βiðyÞ

x�y
rαþ

i

ωðkÞ is a scalar Wiener process on a probability space ðΩ; F; PÞ with

EfωðkÞg ¼ 0; Efω2ðkÞg ¼ 1; EfωðiÞωðjÞg ¼ 0ðia jÞ

Assumption 2. The noise intensity function vector σð�; �; �Þ : N�
Nn �Nn-N satisfies the Lipschitz condition and there exist
constant δ1, δ2 such that the following inequality holds:

σT ðk; x; yÞσðk; x; yÞrδ1xTxþδ2yTy

Assumption 3. In real-time system, there exists a scalar τ1
satisfying τmoτ1oτM , and the time-delay interval τm; τM½ � can
be divided into two subintervals τm; τ1½ Þ and τ1; τM½ �.

Then, a discrete stochastic variable θðkÞ is defined as θðkÞ : N-

f0;1g, if θðkÞ ¼ 1, time delay τðkÞ satisfies τmrτðkÞoτ1, whereas
θðkÞ ¼ 0, τ1rτðkÞrτM . Denote τ1ðkÞ ¼ θðkÞτðkÞ, τ2ðkÞ ¼ ð1�θðkÞÞ
τðkÞ, system (3) can be rewritten as

yðkþ1Þ ¼ CyðkÞþAf ðyðkÞÞþθðkÞBgðyðk�τ1ðkÞÞÞþð1�θðkÞÞBgðyðk�τ2ðkÞÞÞ

þD ∑
þ1

m ¼ 1
μmβðyðk�mÞÞþθðkÞσðk; yðkÞ; yðk�τ1ðkÞÞÞ

�ωðkÞþð1�θðkÞÞσðk; yðkÞ; yðk�τ2ðkÞÞÞωðkÞ
¼ ŷðkÞþθðkÞσðk; yðkÞ; yðk�τ1ðkÞÞÞωðkÞþð1�θðkÞÞ
�σðk; yðkÞ; yðk�τ2ðkÞÞÞωðkÞ ð4Þ

Denote ProbfθðkÞ ¼ 1g ¼ EfθðkÞg ¼ ~θ , ProbfθðkÞ ¼ 0g ¼ 1� ~θ ,
EfðθðkÞ ~θÞ2g ¼ ~θð1� ~θÞ, and

EfθiðkÞθjðkÞg ¼
~θ ; i¼ j

0; ia j

(

Thus, the system (4) is a kind of stochastic system and we need
the following definition to investigate its stability:

Definition 1. The discrete-time stochastic neural network is said
to be exponentially stable in mean square if there exist two
positive constant δ40 and 0oεo1 such that

EfJyðkÞJ2grδεk JϕðsÞJ2

where ϕðsÞ is the initial function of y(k), sAN �τM ;0½ �.

Lemma 1 (Zhu and Yang [10], Hou et al. [11]). For any constant
matrix MARn�n, M ¼MT 40, integers γ2Zγ1, vector function ω :

γ1; γ1þ1;…; γ2
� �

-Rn�n such that the sums in the following are well
defined, thus

�ðγ2�γ1þ1Þ ∑
γ2

i ¼ γ1

ωT ðiÞMωðiÞr� ∑
γ2

i ¼ γ1

ωðiÞ
 !T

M ∑
γ2

i ¼ γ1

ωðiÞ
 !

3. Main results

In this section, a sufficient condition is given to ensure the
system (4) to be exponential stability in mean square.

Theorem 1. The system (4) is said to be mean-square exponentially
stable if there exist matrices P40, Q i40 ði¼ 1;2;3;4Þ, Z40, Z140,
U40, H40, W40, R40, S140, S240 and scalars λ140, λ240
such that the following LMIs hold:

~θðPþτ21Zþðτ1�τmÞ2Z1Þoλ1I

ð1� ~θÞðPþτ21ZþðτM�τ1Þ2Z1Þoλ2I

Π ΞT
1;1P τ1Ξ

T
1;2Z ðτM�τ1ÞΞT

1;3Z1 ðτ1�τmÞΞT
1;4Z1

n �P 0 0 0
n n �Z 0 0
n n n �Z1 0
n n n n �Z1

2
6666664

3
7777775
o0

ð5Þ
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