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This paper is concerned with the stability problem for a class of discrete-time neural networks with
time-varying delays in network coupling, parameter uncertainties and time-delay in the leakage term.
By constructing triple Lyapunov-Krasovskii functional terms, based on Lyapunov method, new sufficient
conditions are established to ensure the asymptotic stability of discrete-time delayed neural networks
system. Convex reciprocal technique is incorporated to deal with double summation terms and the
stability criteria are presented in terms of linear matrix inequalities (LMIs). Finally numerical examples
are exploited to substantiate the theoretical results. It has also shown that the derived conditions are less
conservative than the existing results in the literature.
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1. Introduction

Neural networks have become an important area of research in
many areas including pattern recognition, associative memory,
combinatorial optimization, fixed-point computation and signal
processing [7,10]. Dynamical behaviors such as stability, instability,
periodic oscillatory and chaos of the neural networks are known to
be crucial in applications. Stability of neural networks is a pre-
requisite for many engineering problems, it received much research
attention in recent years and many elegant results have been
reported, for details see [14,24,27,36,38]. It is worth noticing that,
when implementing the continuous-time recurrent neural net-
works for computer simulation, for experimental or computational
purposes, it is essential to formulate a discrete-time system that is
an analogue of the continuous-time recurrent neural networks.
Merely, the discretization cannot always preserve the dynamics of
the continuous-time counterpart even for a small sampling period
[29]. Therefore, there is a crucial need to study the dynamics of the
discrete-time neural networks.

Since time-delay inevitably occurs in the communication and
response of neurons owing to the unavoidable finite switching
speed of amplifiers in the electronic implementation of analog
neural networks, it is more significant to study neural networks
with time-delay, see [43,44,46], and references therein. It is well
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known that time-delay often causes undesirable dynamic behaviors
such as performance degradation, and instability of the systems.
The stability analysis problem for neural networks with time-
delay has attracted much attention and many sufficient conditions
have been proposed to guarantee the asymptotic and exponential
stability of neural networks with various types of time-delay such as
constant, time-varying, random and distributed delays, see for
example [3-5,12,13,15,16,21,34]. In [20], new improved delay-
dependent stability criteria guaranteeing the global exponential
stability have been obtained via a new augmented Lyapunov-
Krasovskii functional (LKF). Stability analysis problem for a new class
of discrete-time neural networks with randomly discrete and dis-
tributed time-varying delays has investigated in [37]. The state
estimation problem for a class of discrete-time stochastic neural
networks with random delays has been studied in [2]. In [25],
synchronization problem has been considered for an array of linearly
coupled neural networks with simultaneous presence of both the
discrete and unbounded distributed time-delays. Recently, synchro-
nization criteria for discrete-time coupled networks have discussed
in [32] and a delay-dependent stability condition has presented in
[40] by using the triple Lyapunov functional technique. Impulsive
perturbations can also cause undesirable dynamical behaviors lead-
ing to poor performance. Moreover, impulsive neural networks
model belongs to a new category of dynamical systems, which are
neither purely continuous-time nor purely discrete-time ones, in
recent years considerable attention has been paid to investigating the
stability analysis of impulsive neural networks, see [43,45]. The
problem of global exponential stability and exponential convergence
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rate for a class of impulsive discrete-time neural networks with time-
varying delays has been studied in [42]. Also, a large number of
interesting results have been reported on the stability of Markovian
jump neural networks with time delays and impulsive perturbations
in [33,43,44,4547).

Neural networks with leakage delay are a class of one type of
important neural networks. Time-delay in the leakage term has a
great impact on the dynamics of neural networks since time-delay in
the stabilizing negative feedback term has a tendency to destabilize a
system, see [8,9,18,19]. Gopalsamy [8] initially investigated the
dynamics of bidirectional associative memory (BAM) network model
with leakage delay. Based on this work, authors in [19] considered
the global stability for a class of nonlinear systems with leakage delay
via LKF and LMI techniques. Authors in [18] extensively studied
recurrent NNs with time-delay in the leakage term and their results
dealt about the existence and uniqueness of the equilibrium point
which is independent of time-delays and initial conditions. So, the
time-delay in the leakage term does not affect the existence and
uniqueness of the equilibrium point. The impulsive effects on
existence-uniqueness and stability problems of neural networks
with leakage delay have been studied in [17,18] through some
analysis techniques on impulsive functional differential equations.
More recently in [28], the passivity analysis has been addressed for
neural networks of neutral type with Markovian jumping parameters
and time-delay in the leakage term. Several results have been
extensively considered the leakage delay in continuous-time neural
networks, see [6,21,22,33]. Recently, authors in [31] have investigated
delay-dependent robust synchronization analysis for coupled sto-
chastic discrete-time neural networks with interval time-varying
delays in networks coupling and a time-delay in leakage term with
parameter uncertainties. Exponential stability for a class of discrete-
time recurrent neural networks model with leakage delay and linear
fractional uncertainties has discussed in [11].

Since leakage delay has more impact on dynamics of neural
networks than other kinds of delay, it is of great importance to
consider the leakage delay effects on dynamics of neural networks.
Moreover, in the existing results, the leakage delay in the leakage
term is usually a constant. In practice, the leakage delay is not a
constant, so we ought to consider the neural networks with time-
varying leakage delay. It is worth noting that in most of the above
said references only continuous-time neural networks with leakage
delay have been studied. However, it appears that very little attention
is devoted to the investigation of stability for discrete-time neural
networks with time-varying leakage delay. This motivates our study.

Based on the discussions, the aim of this paper is to study the
asymptotic stability for a class of discrete-time dynamical net-
works with time-varying leakage delay and norm bounded para-
meter uncertainties. Choosing triple LKFs and utilizing some most
updated techniques for achieving the refined delay-dependence,
novel conditions are established in terms of LMIs. The feasibility of
derived criteria can be easily checked by resorting to Matlab LMI
Toolbox. Finally, numerical examples are included to show the
effect of the leakage delay in the behavior of dynamical system.

This paper is organized as follows. Problem formulation and
preliminaries are given in Section 2. Section 3 gives the main
results of this paper. Numerical examples are demonstrated in
Section 4 to illustrate the effectiveness of the proposed method.
Finally, conclusions are drawn in Section 5.

Notations: Throughout this paper, R" and R™" denote the
n-dimensional Euclidean space and the set of all n xn real
matrices, respectively. The superscript T and (—1) denote the
matrix transposition and matrix inverse, respectively. Matrices, if
they are not explicitly stated, are assumed to have compatible
dimensions. Il - I is the Euclidean norm in R". I is an identity
matrix with appropriate dimension. The notation = always denotes
the symmetric block in one symmetric matrix.

2. Problem description and preliminaries

Consider the following discrete-time delayed neural networks
system with time-varying leakage delay as

y(k+1) = Ay(k — 6(k)) + Bf (y(k)) + C8 ((k — 2(k))) + ], 1)

where y()=[y;(),....¥,()" eR" is the state vector; f()=
[fl(-), ...,fn(-)]T eR"and 8(-) =[&(), ....&€,()]" € R" denote the acti-
vation functions; J=[J;,....J,]" € R" means a constant external
input vector; o(k) represents the leakage delay satisfying 0 <
om < (k) < oy, where o1y, oy are known positive integers repre-
senting the lower and upper bounds of &(k); z(k) describes the
transmission delay satisfying 0 < 7, < ©(k) < 7);, where z,,,, 7 are
known positive integers representing the lower and upper bounds
of (k).

Assumption 1 (Liu et al. [27], Wang et al. [39]). For any
1, S2_€R, s1#5,, the continuous and bounded activation func-
tions f;(-) and g;(-) satisfy

F Sfi(sl)*fi(sz)gl;;r’
S1—5%2
G SM<G+

; 55 <G", i=12,...,n,

where F;, F;*, G/, and G;" are known constants.

Remark 1. In many electronic circuits, the input-output functions
of amplifiers may be neither monotonically increasing nor con-
tinuously differentiable, hence non-monotonic functions can be
more appropriate to describe the neuron activation functions in
designing and implementing an artificial neural network.
Assumption 1 was first proposed in [27,39] and has been subse-
quently studied in many neural network papers [1,36,40]. The
constants F;, F;", G, and G;" in Assumption 1 are allowed to be
positive, negative, or zero. So this condition is more general than
the usual sigmoid functions and Lipschitz conditions. Such a
description is precise in quantifying the lower and upper bounds
of the activation functions.

In order to simplify our proof, we shift the equilibrium point of
(1) to the origin. Assume y*=[y%, y5,....yi]" is an equilibrium
point of (1) and let xi(k)=y;(k)—yf, fi(xi(k)=Ff;(y;(k)—fi¥P),
gi(xi(k—z(k))) = &;(vi(k—7(k))) — &;(y¥). Then, the neural networks
system (1) can be transformed as

X(k+1) = Ax(k — o(k)) + Bf (x(k)) + Cg(x(k — z(k))), 2)

where x(k) = [x1(k), X2(k), ..., x:(K)]7, X(k—o(k)) = [x1(k— 5(k)),

Xa(k—o(k), ..., xn(k— ()], f(x(k) = [f(x1(K)), fx2(k)), ... fxa(RD)]T,

gx(k—o(k)) = [g(x1(k—0o(k))). gXa(k—o(k))), ..., gxn(k—o(k))]". By

Assumption 1, it can be verified readily that the functions f;(-),

gi(), i=1, 2,..,n,satisfy F; < (fi(s1)—fi(s2))/(s1—S2) <F;", G <

(8(51)—&i(52))/(51 —S2) < G for any s1 # s, and f;(0) = g;(0)=0.
The initial condition associated with the model is

X(s) = P(),

where p = max {oy, v}
The following lemmas will be useful in establishing the
stability results.

S=—p, —p+1, —p+2,..,1. 3)

Lemma 1 (Liu and Zhang [26], Park et al. [30]). Let f1, fo,....fn :
R™ —R have positive values in an open subset D of R™. Then, the
reciprocally convex combination of f; over D satisfies

1
Z;f i) = Z;f i)+ 233)(1_;?1‘,1‘ (k)

min
{ailai > 0,301 = 1} O
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