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a b s t r a c t

In the first part of this paper, we present a method to build affinity matrices for spectral clustering from a
density estimator relying on K-means with subbagging procedure. The approach is anchored in the
theoretical works of Wong (1980, 1982a, b) [13–15] on the asymptotic properties of K-means as a density
estimation method. The subbagging procedure is introduced to improve the density estimate accuracy.
The behavior of the proposed method is analyzed on diverse data sets and two new mechanisms are
suggested to improve clustering results on non-convex data. In the second part of the paper, we establish
a link between the presented method and the evidence accumulation clustering (EAC) approach by
showing that a normalized version of the density-based similarity matrix is approximately equal to a
normalized version of the co-association matrix. The co-association matrix provides the co-occurrence
probability of data pairs assigned to a same cluster over multiple K-means clustering partitions.
Experimental results on artificial and real data demonstrate the effectiveness of the method and provide
empirical support for the established link.

Crown Copyright & 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

Over the last decade, spectral clustering has attracted a lot of
attention for partitioning data. Part of its popularity comes from
its good performance on data sets with non-convex clusters for
which traditional algorithms such as K-means offers inferior
performance. Spectral clustering has its root in graph partitioning
problems and rely on the analysis of a similarity matrix1. In a
recent paper, Zhang et al. [1] observed that (i) most studies on
spectral clustering focus on the extraction of an optimal partition,
given an affinity matrix and (ii) the problem of choosing an
appropriate affinity matrix has received much less attention albeit
its capital importance on the performance of spectral clustering is
well-established [2–4]. The affinity matrix reflects the pairwise
similarity relations among data points but its construction is a
non-trivial task. Many ways of mapping a data set into an affinity
matrix exist. The most common ones include ε-neighborhood
graph, k-nearest neighbor graph and similarity functions [5]. The
most widely used method is probably the pairwise similarity
measure based on a Gaussian function G(xi, xj)¼ exp(� || xi�xj
||2 /2σ2) where x denotes the data sample vector and σ is a free
parameter. For the popular normalized-cut algorithm [6], it is
suggested setting σ as a fraction, say 0.10, of the range of the

pairwise distance encountered in the data set. However, Zelnik-
Manor et al. [7] demonstrated that multiscale data sets cannot be
properly partitioned with a unique value of σ and they proposed
an algorithm to adapt a scaling measure according to a k-neighbor
distance. Clearly, the k-neighbor distance relates to local density.
Wang et al. [8] introduced clustering aggregation by probability
accumulation where the co-association matrices built from
K-means clustering are weighted by the average pairwise distance
of each cluster. Recently, Zhang et al. [1] proposed a local density
adaptive similarity measure based on neighborhood density infor-
mation. The latter is based on the size of the shared neighborhood
between two points.

The main focus of this paper is on density-based affinity matrix
construction for spectral clustering. The idea of defining affinities
from nonparametric density estimator was discussed in [9,10],
where a link between graph-cut and kernel density estimation was
established. It was shown that kernel density estimation could be
used to define the similarity between two graph nodes. Subse-
quently, this probabilistic interpretation was thoroughly exploited
in the mean shift spectral clustering algorithmwith applications to
image segmentation [11].

Kernel density estimation suffers, however, from the curse of
dimensionality and presents mathematical challenges to establish
their statistical characteristics in high dimension such as mean
square error, consistency and rate of convergence [12]. Notably,
multivariate density estimation from kernel estimation represents
only one out of two historical prevailing approaches for density
estimates, the other one being binned-type estimates in which the
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histogram is the most well known representative. In this paper,
we concentrate on binned-type estimates, which to the knowledge of
the author have never received in-depth analysis for the construction
of density-based affinity matrices. In the following, we present and
test a locally adaptive affinity matrix construction based on K-means
density estimation embedded within a subbagging procedure. Con-
trary to Parzen estimation, the proposed method is locally adaptive.
The method is rooted in the works of Wong [13–15] on the asymp-
totic properties of K-means as a density estimation procedure and on
the bootstrap-like proposal first explored in [16,17]. The algorithm is
outlined in Algorithm 1. In brief, K-means is applied a large number
of times P, each time with a number of clusters prescribed by the
relationships derived in Wong [13–15] for appropriate density
estimation (step 2). For each cluster within a given partition, the
corresponding number of points and its associated support (volume)
are computed (step 3). A density-based co-association matrix is then
constructed on a pairwise basis where each pair within a cluster is
assigned with the inverse support size of the cluster (step 6). Finally,
the density-based affinity matrix is obtained from the average of the
P density-based co-association matrices (step 8). This basic algorithm
is further improved by the introduction of two new selection
mechanisms to deal with violations of data distribution continuous
assumption on density estimation and its impact on spectral cluster-
ing (shaded lines in Algorithm 1). The two proposed mechanisms
resort on well-known statistical tests and prevent the presence of
low quality partitions and bad clustering due to abrupt density
changes.

Readers familiar with clustering ensemble methods have
probably noticed the similarity in the steps described in
Algorithm 1 with cluster ensemble construction. In the second
part of the paper, we consolidate that similitude between both
approaches. More precisely, we establish a direct connection
between the density-based approach and the evidence accumu-
lation clustering (EAC) paradigm introduced in Fred and Jain
([18], hereafter FJ). Such a connection helps explain the good
performance (or failure) of EAC in relation to the characteristics
of data sets. Furthermore, this connection permit avoiding the
complexity level involved in the volume computation associated
with the density-based affinity construction. To validate the
connection, we first need to demonstrate theoretically and
experimentally that density-based similarity construction based
on K-means is a sound approach.

The paper is organized as follows. Section 2 provides the back-
ground material relevant to the proposed approach. Section 3
details the K-means-based density estimation method and
Section 4 describes the construction of the density-based affinity
matrix. The discontinuous distributions case is discussed in
Section 5 and some algorithmic implementation details are given
in Section 6. Section 7 presents the experimental results on both
artificial and real data sets. The connection between the proposed
method and the EAC is unveiled in Section 8. We conclude in
Section 9.

2. Background works

2.1. K-means for density estimation

In a series of papers, Wong [13–15] demonstrate that, provided
that the number of clusters k is of order O([N/log N]1/3), K-means can
be used to construct a uniformly consistent histogram estimate of an
unknown density, f(x). Using the asymptotic properties of K-means,
Wong [13] showed that the sizes of K-means cluster intervals for
continuous univariate distributions are proportional to f(x)�1/3 at the
midpoints of the intervals and therefore are adaptive to the under-
lying density, f(x). This implies that the cluster size will be large where

data are sparse and small where data are dense. This behavior is a
highly desirable property for a density estimator [17,19]. For multi-
variate distributions, Wong [14] proposes to estimate the density
according to f ðxiÞ ¼ c Ni

1þd=2 WSSi
�d=2, where xi and WSSi are the

sample mean and within-cluster sum of squares of the ith cluster
containing Ni objects, c is a proportionality constant, and d is the data
dimensionality (d41). The estimate, f ðxiÞ, is based on the fact that
the volume of the ith cluster is approximated by [N�1

i WSSi]d/2. It is
expected that such volume estimation be valid for low dimensions.
The case for high dimensions will be discussed in Section 6.2. Wong
suggested two empirical expressions to determine the number k of
cluster: kW1¼4N 0.3 [15] and kW2¼7(N/log N)1/3 [14]. These two
expressions are of key practical value for the proposed method. In
general, almost-sure L1 consistency of density estimate derived from
data-driven partitions has been demonstrated in [20].

2.2. Bootstrap aggregation (bagging) for density estimate

Generally, the K-means algorithm is initialized from seed points
selected randomly among the data set and they represents typically
only a few percent of the data set. It is well known that K-means
results are sensitive to initialization. Such an algorithm is therefore
unstable in the sense that perturbations, i.e. different initializa-
tions, result in different outputs. Browne [21], in a way similar to
[16,17,22,23,12] has utilized subbagging to stabilize density estimate
from random tessellation. Subbagging is similar to bagging except
that only a subset of the data set is utilized [24]. The idea explored
by the aforementioned authors consists in using a random sub-
sample of the data set to construct Delauney tessellation (or its dual,
the Voronoi tessellation). Like in histogram-based density estimate,
the number of data set points in a tile divided by its support size
provides a local density estimate. By additional re-sampling (boot-
strap) an average density over tiles is obtained (aggregation).
Champaneri [12] proved that binning based on Delaunay tessellation
is consistent, conditionally maximum likelihood and has asymptotic
distribution. For random tessellation, however, and contrary to
Wong's works, there is no a priori prescription to find the appro-
priate subset size for density estimation from random tessellation.
The latter observation was decisive to us in considering K-means
tessellation instead of a random one. Although Browne [21] pro-
posed an a posteriori method to determine the appropriate size
using Akaike information criterion, this requires computing density
estimate for a large number of sub-sample sizes. Notice that we do
not discard random tessellation as a valid alternative.

3. Improved density estimate: K-means with subbagging

Considering the previous observations, one expects that den-
sity estimation from K-means should benefit from procedures such
as bootstrap aggregating. In particular, subbagging is well adapted
for Wong's approach as the method intrinsically uses random sub-
sampling. The proposed K-means algorithm for density estimate
with subbagging works as follows:

1. Choose k�O([N /log N]1/3), predefine a large number of parti-
tions P;

2. Apply K-means P times with k random cluster centers selected
from the full sample;

3. For each generated partition t, t¼1 to P, assign to every xi, i¼1
to N, its corresponding cluster point density estimate δti . The
latter is given by Nt

i / (NS
t
i ) where Nt

i is the number of points in
the cluster to which xi belong to and Sti is the cluster support
(volume);

4. The density estimate δ̂i at xi is the average density evaluated
overall partitions:δ̂i ¼ P�1∑P

t ¼ 1δ
t
i .
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