Neurocomputing 151 (2015) 905-912

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

NEUROCOMPUTING

Neurocomputing

NEUROCOMPUTING
LETTERS

Android based malware detection using a multifeature collaborative
decision fusion approach

@ CrossMark

Shina Sheen ™, R. Anitha, V. Natarajan

Department of Applied Mathematics and Computational Sciences, PSG College of Technology, Coimbatore, India

ARTICLE INFO

ABSTRACT

Article history:

Received 15 February 2014
Received in revised form

9 September 2014

Accepted 3 October 2014
Communicated by T. Heskes
Available online 18 October 2014

Keywords:

Android

Malware

Multifeature

Collaborative decision fusion

Smart mobile device usage has expanded at a very high rate all over the world. Since the mobile devices
nowadays are used for a wide variety of application areas like personal communication, data storage and
entertainment, security threats emerge, comparable to those which a conventional PC is exposed to.
Mobile malware has been growing in scale and complexity as smartphone usage continues to rise. Android
has surpassed other mobile platforms as the most popular whilst also witnessing a dramatic increase in
malware targeting the platform. In this work, we have considered Android based malware for analysis and
a scalable detection mechanism is designed using multifeature collaborative decision fusion (MCDF). The
different features of a malicious file like the permission based features and the API call based features are
considered in order to provide a better detection by training an ensemble of classifiers and combining
their decisions using collaborative approach based on probability theory. The performance of the proposed
model is evaluated on a collection of Android based malware comprising of different malware families and
the results show that our approach give a better performance than state-of-the-art ensemble schemes

available.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mobile technology has expanded dramatically around the world.
Nowadays smart mobile devices are ubiquitous, they are used
for personal mobile communication, data storage, multimedia and
entertainment. These devices integrate the functionality of PDAs and
mobile phones and make different types of network services avail-
able to mobile applications. According to the Cisco Visual Networking
Index [1], global mobile data traffic will increase 18-fold between
2011 and 2016. By the end of that time period, it is projected that
there will be 8 billion mobile devices in use around the world.
Android and Apple iOS combined account for the significant majority
of the global smartphone installed base in 2012. Smartphones are
often used to read enterprise e-mail and documents, find local
businesses, get deals on products, buy them and click on mobile
ads. This may lead to a large number of devices being vulnerable to
varied types of attacks. As most of the critical applications like
banking, E-Commerce, etc., are moving to mobile environment, a
malicious attack not only puts in jeopardy personal privacy, but also
threatens a financial disaster. Android has attracted the most con-
sideration of malicious elements due to its growing popularity and

* Corresponding author.
E-mail addresses: shina_np12@yahoo.com (S. Sheen),
anitha_nadarajan@mail.psgtech.ac.in (R. Anitha),
natarajan.v.in@ieee.com (V. Natarajan).

http://dx.doi.org/10.1016/j.neucom.2014.10.004
0925-2312/© 2014 Elsevier B.V. All rights reserved.

openness as compared to i0S and Windows. Juniper Networks in
their third annual Mobile threats report [2] has stated that malware
aimed specifically at Android devices have increased at an alarming
rate since 2010. Cisco's 2014 Annual Security Report states that 99%
of mobile malware software target Android platform [3].

The two approaches of malware analysis, static and dynamic,
widely used in the literature has been used in Android based
malware detection also. Although dynamic analysis of Android
malware can provide a comprehensive view, it is still subjected to
high cost in environment deployment and manual efforts in
investigation. In this study, we propose a static feature-based
mechanism for detecting Android malware. It is seen that multiple
types of features like API calls and permissions requested by an
application can be extracted from an Android apk (Android applica-
tion package) file. Learning from these representations separately
can lead to better gains than considering them as a single dataset. In
this work, a multifeature approach by extracting various features
from Android apk files is considered. Our method is particularly
appealing for the following three reasons:

® First, we are able to combine different feature sets of an
executable file in a way which allows the learning algorithm
to take advantage of all the features simultaneously.

® Second, our method is scalable in the sense that future popular
data sources could be easily added to the model without
complicating the final result.


www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.10.004
http://dx.doi.org/10.1016/j.neucom.2014.10.004
http://dx.doi.org/10.1016/j.neucom.2014.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.10.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.10.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.10.004&domain=pdf
mailto:shina_np12@yahoo.com
mailto:anitha_nadarajan@mail.psgtech.ac.in
mailto:natarajan.v.in@ieee.com
http://dx.doi.org/10.1016/j.neucom.2014.10.004

906 S. Sheen et al. / Neurocomputing 151 (2015) 905-912

® Finally, the method is based on a generalized collaborative
approach where there are n different classifiers and m different
feature sets. The classifiers collaborate with each other to reach
a final decision rather than depending on a single classifier.

The main contributions in this work are

® Analysis of a large collection of malicious and benign files to
find the most discriminating features for malware detection.

® Consideration of multiple sets of features rather than depend-
ing only on a single data source.

® Design and implementation of an ensemble of classifiers
exploiting the multiple sets of features extracted from Android
files using a collaborative method for decision fusion.

The remainder of this paper is organized as follows. Section 2
discusses the related work and Section 3 discusses in detail about
the various features extracted from executable files. Section 4
describes the proposed method to classify a given file based on
Multifeature Collaborative Decision Fusion (MCDF). The experi-
mental results and analysis are presented in Section 5 followed by
the concluding remarks.

2. Related work

With the proliferation of mobile devices in the market there has
been an active research in the field of Android based malware
detection in the recent past. The APK file is the file format used to
distribute and install software (usually games or applications) on the
Android operating system. Every application must have an Android-
Manifest.xml file in its root directory. The manifest presents essential
information about the application to the Android system, before it
can run any of the application's code. It declares which permissions
the application must have in order to access protected parts of the
API and interact with other applications. In order to protect Android
users, applications access to resources is restricted with permissions.
An application must obtain permissions in order to use sensitive
resources like the camera, microphone, or call log. Felt et al. [4]
developed a tool that generates the maximum set of permissions
required for an application and compares them to the set of
permissions actually requested. The Kirin project [5] provides light-
weight certification of applications at the time of installation by
looking at the configuration metadata such as requested permissions,
which accompanies Android applications. From this metadata, Kirin
infers potential functionality and compares it against a ruleset of
potentially dangerous properties. If any rule fails, the application is
not installed.

In [6] a machine learning based system for the detection of
malware on Android devices is presented. Permissions and control
graph features are extracted and trained on a one-class support
vector machine in an offline manner. But real time detection with
control flow graphs is a challenging task. Sanz et al. [7,8] analyzed
the user permissions and other user features and applied various
machine learning algorithms to attain an accuracy of 86%. Zhou
et al. [9] identified Android malware based on the similarities of the
requested permissions and also on the behavioral aspects like the
installation method, nature of carried payload to known malware
families.

Another area of research is in the analysis of system calls.
Schmidt et al. [10] extracted library and system function calls from
Android executables and compared them to malware executables to
classify apps. Crowdroid [11] collected system call traces of running
apps on different Android devices. They applied clustering algo-
rithms to detect malware. In DroidAPIminer [12] frequency analysis
of API calls within benign and malware apps are made and

evaluated on different classifiers using the generated feature set.
Andromaly [13] is designed to continuously monitor various system
metrics to detect suspicious activities through applying supervised
anomaly detection techniques.

Bartel et al. [14] analyzed various applications and concluded that
many applications declare permissions but are not actually used. So
just by mining the manifest file for permissions alone may not give
an accurate result. In an Android framework, once an application is
installed, a set of APIs are called during runtime. Each API call is
associated with a particular permission. When an API call is made,
the Android OS checks whether or not its associated permission has
been approved by the user. Only if a match results, it will proceed to
execute the certain API call. So the API calls provide the information
whether a permission is actually used or not.

The work on ensemble based learning, where combining the
decisions of a collection of classifiers can be an effective strategy [15],
is an interesting area that has got a lot of attention. Recently Wozniak
et al. [16] have given a comprehensive study of the advantages of
multiple classifier systems and its applications in varied fields like
remote sensing, computer security, financial risk assessment, fraud
detection, medical diagnosis and recommender systems. According
to Axelsson [17], there are many different types of intrusions in
reality, and different detectors are needed to detect them. If one
method or technique fails to detect an attack, then another should
detect it. Lee [18] proposed that combining multiple models allows
for a more easily adaptable and extendible framework. Fan [19]
expanded on this idea, noting that an ensemble approach allows one
to quickly add new classifiers to detect previously unknown activity.
His research in this area suggested that this can be done without any
loss, and possibly a gain, in classification performance. An ensemble
of one class classification is proposed by [20-22] where the number
of training instances of the target class are very less. Jackowski et al.
[23] proposed an effective training procedure consisting of two
phases. The first phase detects the classifier competencies and
adjusts the respective fusion parameters. The second phase boosts
classification accuracy by elevating the degree of local specialization.
Robert et al. [24] proposed a collaborative decision fusion using n
views and n agents for fish classification. In their work one view is
given to one agent and then collaborative fusion is done.

We have extracted feature sets mainly in two categories namely
the permissions required for an application and the API calls used
within an application. The different types of data sources mentioned
above try to capture the relation between the permissions declared
in the manifest file and the permissions actually used. Considering
both these features may produce a more accurate result. Our work
differs from the above methods in the sense that we consider two
discriminating features together and train them on separate classi-
fiers which may have different generalization errors. Further a
collaborative decision is made based on the joint probabilities of
classification by the various classifiers.

3. Feature extraction

This section describes the analysis of Android apk files and the
various features extracted. Using static analysis we have extracted
features like permissions and API calls.

3.1. Permissions

Android OS model requires applications to highlight what
features of OS or resources they are going to use. By default android
applications do not have any permission to intervene the device
data or components. This can be provided either in (application) tag
or (uses — permission) in the manifest file, a sample of which is
shown in Fig. 1.



Download English Version:

https://daneshyari.com/en/article/412074

Download Persian Version:

https://daneshyari.com/article/412074

Daneshyari.com


https://daneshyari.com/en/article/412074
https://daneshyari.com/article/412074
https://daneshyari.com

