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The sampling-based motion planning algorithm known as Rapidly-exploring Random Trees (RRT) has
gained the attention of many researchers due to their computational efficiency and effectiveness. Re-
cently, a variant of RRT called RRT* has been proposed that ensures asymptotic optimality. Subsequently
its bidirectional version has also been introduced in the literature known as Bidirectional-RRT* (B-RRT*).
We introduce a new variant called Intelligent Bidirectional-RRT* (IB-RRT*) which is an improved variant
of the optimal RRT* and bidirectional version of RRT* (B-RRT*) algorithms and is specially designed for
complex cluttered environments. IB-RRT* utilizes the bidirectional trees approach and introduces intelli-
gent sample insertion heuristic for fast convergence to the optimal path solution using uniform sampling
heuristics. The proposed algorithm is evaluated theoretically and experimental results are presented that
compares IB-RRT* with RRT* and B-RRT*. Moreover, experimental results demonstrate the superior effi-

RRT* ciency of IB-RRT* in comparison with RRT* and B-RRT in complex cluttered environments.

Optimal path planning
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1. Introduction

Motion planning is a well-known problem in robotics [1]. It
can be defined as the process of finding a collision-free path for
a robot from its initial to goal point while avoiding collisions with
any static obstacles or other agents present in its environment. Al-
though motion planning is not the only fundamental problem of
robotics, perhaps it has gained popularity among researchers due
to widespread applications such as in robotics [2], assembly main-
tenance [3], computer animation [4], computer-aided surgery [5],
manufacturing [6], and many other aspects of daily life.

The journey of finding solution to motion planning problems
started with complete planning algorithms that comprised of de-
terministic path planning approach. Complete motion planning
algorithms [7,8] are those algorithms that converges to a path
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solution, if one exists, in finite time. These algorithms are proven
to be computationally inefficient [9] in most of the practical mo-
tion planning problems [ 10]. Resolution complete algorithms were
then introduced that require fine tuning of resolution parameters
for providing the motion planning solution, if one exists, in a fi-
nite time period. Artificial Potential Fields (APF) [11] is a well-
known resolution complete algorithm. However, APF suffers from
the problem of local minima [12] and does not perform well in
the environment with narrow passages. Hence, the search for an
efficient solution to the problem continued and the idea of ex-
act roadmaps was introduced in the literature which relies on
the discretization of the given search space. This discretization of
search space makes the algorithm computationally expensive for
higher dimensional spaces, that is why the application of such al-
gorithms like Cell Decomposition methods [13,14], Delaunay Tri-
angulations [15] and Dynamic Graph Search methods [16,17] are
limited to low dimensional spaces only [18]. Moreover the algo-
rithms that combine the set of allowed motions with the graph
search methods thus generating state lattices, such as in [19-
21], also suffered from the undesirable effects of discretization.
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Hence to solve the higher dimensional planning problems, the
sampling-based algorithms were introduced [ 18]; the main advan-
tage of sampling-based algorithms as compared to other state-of-
the-art algorithms is avoidance of explicit construction of obstacle
configuration space. These algorithms ensure probabilistic com-
pleteness which implies that as the number of iterations increases
to infinity, the probability of finding a solution, if one exists, ap-
proaches one. The sampling-based algorithms have proven to be
computationally efficient [9] solution to motion planning prob-
lems. Arguably, the most well-known sampling-based algorithms
include Probabilistic Road Maps (PRM) [22,23] and Rapidly explor-
ing Random Trees (RRT) [24]. However, PRMs tend to be inefficient
when obstacle geometry is not known beforehand [10]. Therefore,
in order to derive efficient solutions for motion planning in the
practical world, the Rapidly-exploring Random Trees (RRT) algo-
rithms [24] have been extensively explored. Various algorithms
enhancing original RRT algorithm have been proposed [25-27,10].
These algorithms present a solution regardless of whether specific
geometry of the obstacles is known beforehand or not. One of the
most remarkable variant of RRT algorithm is RRT*, an algorithm
which guarantees eventual convergence to an optimal path solu-
tion [10], unlike the original RRT algorithm. Just like the RRT algo-
rithm, RRT* is able to generate an initial path towards the goal very
quickly. It then continues to refine this initial path in successive it-
erations, eventually returning an optimal or near optimal path to-
wards the goal as the number of iterations approach infinity [28].
This additional guarantee of optimality makes the RRT* algorithm
very useful for real -time applications [29]. However, some major
constraints still exist in this RRT variant which are presented in this
paper. For example:

(i) its slow convergence rate in achieving the optimal solution;

(ii) its significantly large memory requirements due to the large
number of iterations utilized to calculate the optimal path;
and

(iii) its rejection of samples which may not be directly connectable
with the existing nodes in the tree, but may lie closer to the
goal region and hence could aid the algorithm in determining
an optimal path much faster.

Various heuristics have been introduced, such as [30-33], which
perform guided search of the given space instead of pure uni-
form search (as by RRT and RRT*). Although these biased sam-
pling heuristics make the original RRT* algorithm fast but there is
a drawback of computational overload caused by biased sampling.
This computational overload limits their application to a limited
number of fields [34]. Moreover another disadvantage of determin-
istic sampling heuristics is that they may interfere with the algo-
rithm characteristics. For example assume a simple case of using
goal-biased sampling [31] with bidirectional RRT that alternatively
grows two trees. The use of this biased sampling will cause the two
trees to always remain in one half of the search space, which is
quite undesirable. Hence, to cover the whole search space, a sep-
arate sample generator is required for both trees which will cost
a significant computational load. Hence there is a need of some
better approach that enhances the convergence rate of RRT* for
achieving the optimal path solution without affecting the random-
ization of its sampling heuristic. More recent proposition is the
bidirectional version of RRT* known as B-RRT* [35]. B-RRT* pre-
sented in [35] is a simple bidirectional implementation of RRT*. B-
RRT* uses a slight variation of greedy RRT-Connect heuristic [27]
for the connection of two trees. Two directional trees employing
greedy connect heuristic for the connection of trees does not en-
sure asymptotic optimality [35]. The B-RRT* uses slight variation of
greedy heuristic i.e., the tree under process first searches for the
neighbor vertices before making an attempt to connect the trees
using RRT-Connect heuristic [27]. This hybrid greedy connection

heuristic of B-RRT* slows down its ability to converge to the op-
timal solution and also makes it computationally expensive. More
detailed discussion is provided in the analysis section. This paper
introduces a bidirectional variation to the RRT* algorithm, with
unique sample insertion and tree connection heuristics that allows
fast convergence to the optimal path solution. The proposed Intel-
ligent Bidirectional-RRT* (IB-RRT*) algorithm has been tested for
its robustness in both 2-D and 3-D environments and has also been
compared with other state-of-art algorithms such as Bidirectional-
RRT* [35] and RRT* itself [28]. The rest of the paper is organized
as follows. Section 2 addresses the problem definition, Section 3
explains the RRT* algorithm while Section 4 describes the B-RRT*
motion planning algorithm in detail. Section 5 presents the pro-
posed Intelligent Bidirectional-RRT* (IB-RRT*). Section 6 presents
analysis of the three algorithms under investigation in terms of
probabilistic completeness, asymptotic optimality, convergence to
the optimal solution and computational complexity. Section 7 pro-
vides experimental evidence in support of theoretical results pre-
sented in the previous section, whereas Section 8 concludes the
paper, also suggesting some future areas of research in this partic-
ular domain.

2. Problem definition

Let the given state space be denoted by a set X C R", where n
represents the dimension of the given spacei.e.,n € N,n > 2. The
configuration space is further classified into obstacle and obstacle-
free regions denoted by Xops C X and Xgee = X \ Xobs, respec-
tively. Xgoai C Xiree is the goal region. Let T, = (V,, E;) C Xfree and
Ty, = (Vp, Ep) C Xgee represent two growing random trees, where
V denotes the nodes and E denotes the edges connecting these
nodes. X2, € Xiree and X2, € Xg0a represent the starting states for
T, and Tp. The function w () computes the Lebesgue measure of any
given state space e.g. u(X) denotes the Lebesgue measure of the
whole state space X. It is also called the n-dimensional volume of
any given configuration. This paper only considers Euclidean space
and positive Euclidean distance between any two statese.g.,x; € X
and x, € X is denoted by d(x1, x2). The closed ball region of ra-
diusr € R,r > 0 centered at x is denoted as By, = {x; € X :
d(x, x;) < r},wherex € X canbe any given configuration state. Let
the path connecting any two states x; € Xfee and X, € Xjee be de-
noted by o : [0, s'], such that 6 (0) = x; and o (s') = x,, whereas s’
is the positive scalar length of the path. The set of all collision-free
paths o is denoted as ) ;... Given any random state X € X, the
path function connecting initial state x;,;; and random state x is de-
noted as [0, $;] C Xree|{0,(0) = Xinit and o (s,) = x}, while the
path function connecting random state x and goal region Xg,; is de-
noted as 6 [0, sp] C Xfreel{o},(0) = x and o/ (Sp) € Xgoal}. The com-
plete, end-to-end path function i.e., the path function from root to
the goal is denoted by o{(s) = o,lo,, : [0,s] € X, where s rep-
resents the scalar length of the end-to-end path. The expression
o,|o}, € X describes the concatenation of the two path functions,
o, and oy. The path function o is the end-to-end feasible path in
obstacle-free configuration space, i.e., or € Xfee. The set of all end-
to-end collision-free paths is denoted as ) ;i.e., or € ) ;. The cost
function c(-) computes the cost in terms of Euclidean distance.

The following motion planning problems will be considered in
the proposed algorithm:

Problem 1 (Feasible Path Solution). Find a path of : [0, s], if one
exists, in obstacle-free space Xgee C X such that o¢(0) = Xjnit €
Xiree and o0¢(S) € Xgoal. If no such path exists, report failure.

Problem 2 (Optimal Path Solution). Find an optimal path o7 : [0, s]
connecting Xinir and Xgoa1 in obstacle-free space Xgee C X, such that
the cost of the path oy is minimum, i.e., c(of) = {mincc(o7) :

of € Zf}
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