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a b s t r a c t

The segmentation of lesion tissue in brain images of stroke patients serves to identify the extent of the
affected tissues, to perform prognosis on its recovery, and to measure its evolution in longitudinal
studies. The different regions of the lesion may have different imaging contrast properties in different
image modalities, making difficult the automation of the segmentation process. In this paper we
consider an Active Learning selective sampling approach to build image data classifiers from multimodal
MRI data to perform voxel based lesion segmentation. We report encouraging results over a dataset
combining functional, anatomical and diffusion data.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Stroke is the third leading cause of death in industrialized
countries [18]. Patients surviving stroke suffer an strong economic
and personal impact, and it is highly desirable to provide accurate
prognosis and motorization of the evolution of the patient.
The localization of the stroke lesion by medical imaging means
is a powerful non-invasive tool to support the clinical attention
to the stroke patient. The kind of imaging used encompasses
several modalities of Computerized Tomography (CT) and Mag-
netic Resonance Imaging (MRI), which have specific sensitivities
to the diverse parts of the lesion [18]. The automated localization
of the brain areas affected by the stroke lesion can be stated
as a classification problem, which predicts the lesion/non-lesion
character of one voxel on the basis of the imaging data. This paper
is devoted to explore the predictive capacity of Random Forests
(RF) trained with an Active Learning strategy, to the automated
segmentation of stroke lesion from several MRI modalities.

Active Learning by selective sampling: Given a labeled training
set, supervised classifier learning consists in building a map of
data features into a set of classes possessing good generalization to
predict the class of unseen data instances. Hence, validation
processes involve simulating the existence of these future data

events by cross-validation processes withholding some of the
available data samples for test after training. The Active Learning
approach consists in the progressive increase of the sampled data
used for classifier training by some exploratory strategy. The idea
of selective sampling [6] is based on the existence of an oracle that
answers queries about the data which arise from an active
exploration of the data domain. The active exploration takes the
form of the computation of an uncertainty measure on the
classification of the available data samples. Most uncertain sam-
ples are assumed to be more informative to build an accurate
classifier, thus the oracle is queried about their ground truth labels
and they are added to the training dataset. Testing is always
reported on the data not used for train.

In general terms, Active Learning [22] soughs the simultaneous
two-fold goal of maximizing the classifier accuracy general-
ization and using the minimal number of training samples
whose ground truth label is required of the oracle, which is a
human operator when dealing with image segmentation issues.
Often, Active Learning starts from a small labeled data sample.
The iterative process then performs the following steps: (a) train
a classifier, (b) apply the classifier to unlabeled data samples com-
puting their uncertainty, (c) select the most uncertain, (d) ask
the oracle about their labels, (e) add them to the training sample.
The process convergence is often measured on the accuracy of
the test data. The uncertainty measure definition derives from
the classifier characteristics [22]. In ensemble classifiers, it often
consists in some measure of the agreement of the individual
classifiers.
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Image segmentation by classification: Image segmentation can
be realized as a classification process, each pixel receives a class
label according to the associated image features which can be
computed from the pixel neighborhood. For instance, the RF
classifier [3] has been applied to delineate the myocardium in
3D ultrasounds of adult hearts [14], brain tissue segmentation
[9,24,23], detection of several organs in computed tomography
volumes [7,8].

Active Learning has been successfully applied to classification of
remote sensing images [17,22,21], medical image segmentation such
as Abdominal Aortic Aneurysm computed tomography angiography
images [5,16], image retrieval based on semi-supervised Support
Vector Machines [10], and the selection of a minimal collection of
training images for the development of combined generative and
discriminative models in the segmentation of CT scans [11].

Stroke lesion segmentation: In patients suffering a stroke, it is a
common practice to perform lesion volume estimation on Diffu-
sion Weighted Imaging (DWI) data. However, it is argued [1] that
while DWI is sensitive in the acute phase, it becomes less accurate
during the subacute phase (i.e. 3 months after stroke insult).
Nevertheless, lesion identification is also challenging for other
modalities, such as Fluid Attenuated Inversion Recovery (FLAIR),
because of large variations in shape, location signal intensity, and
the existence of image artifacts and pre-stroke lesions. For this
reason we have considered several manual delineations as the
gold standard for classifier training, although the feature vectors
are always the same.

In the past, some attempts have been made on anatomical T1
weighted MRI data [19] to perform lesion identification using
standard segmentation processes followed by a fuzzy clustering
approach to detect outlier signal values in the segmented volume.
The interactive segmentation of stroke and tumor lesions on FLAIR
images is reported in [1]. The process includes the clustering of
FLAIR signal into foreground and background classes. Lesions are
extracted as hyperintense outlier voxels on the segmented fore-
ground regions. The segmentation applying a Markov Random
Field model on the fusion of multi-sequence MRI images is
reported in [12]. The work is closely related to the elaboration of
an atlas of brain territories which provides the topological back-
ground for the segmentation process. A z-score based test is
applied to diffusion images to produce lesion identifications which
are then used to build a map of lesion incidence in the occipital
lobe [15] for the use in clinical studies. A comprehensive review
containing a critical appraisal of computational methods applied
on MRI and CT image data to identify lesions in brain tissues and
perform prognosis of its recovery is given in [18].

Paper contributions: The work reported in this paper follows a
classification approach to automated stroke lesion segmentation,
where the classifier is trained by an Active Learning selective
sampling strategy. The classifier model chosen is the Random
Forest (RF). A trained RF classifier is applied to each voxel
independently to predict the class of the pixel, lesion versus no
lesion. The voxel features which are the input of the classifier are
the values of the scalar MRI data volumes and the scalar measures
extracted from multidimensional data, described in Section 2.
Compared with other algorithms reported in the literature, the
main advance of our approach is that it combines heterogenous
information from diverse MRI modalities, while other algorithms
work on a single image modality. Further contribution to the state
of the art is the Active Learning approach to sample selection,
which allows an enhanced interactive work in clinical environ-
ments. Different from other reported works is the consideration of
the construction of the gold standard for classification validation,
given by manual delineations of the lesion ground truth. We
explore the effect of the source data used by the expert neuror-
adiologist to carry out the manual delineation, finding quite

different gold standards in some cases. The computational experi-
ments carried out explore the effect of the variability in the
provided the gold standard. To this end, we consider four different
gold standards obtained from different image modalities.

Structure of the paper: Section 2 provides the explanation of the
multimodal MRI data acquisition and pre-processing. Section 3
gives a description of the classification learning methods, includ-
ing a detailed Active Learning algorithm. Section 4 presents the
experimental design. Section 5 presents the experimental results.
Section 6 contains a discussion of the results. Finally, Section 7
gives the conclusions of our work.

2. Multimodal MRI data and its preprocessing

The details of MRI signal acquisition for each modality are given
elsewhere. The pre-processing pipeline is specific for each kind of
image modality. Hence a careful process has been carried out for
each of them to ensure anatomical alignment and to remove noise
sources. Most pre-processes have been carried out using FSL
software library (FMRIB Centre, Department of Clinical Neurology,
University of Oxford, www.fmrib.ox.ac.uk/fsl [20]. Besides, the
multidimensional signal, such as fMRI and DWI are subjected to
some feature extraction processes that produce scalar measures
for each voxel. These pipelines are as follows:

T1 weighted MRI preprocessing consisted of the removal
of non-brain structures, linear registration of the skull
stripped image to the 2 mm resolution MNI152 tem-
plate, nonlinear registration of the volume created
from the previous linear registration to compensate
the local changes around ventricles and sulci caused
by atrophy, and, finally, we applied the estimated
warps to the skull striped volume.

T2 and Flair image preprocessing consisted of the
removal of non-brain structures, rigid linear co-
registration of image to the subject's T1 skull striped
volume (6DOF) and affine (12DOF) linear registration
to the 2 mm resolution MNI152 brain template.

fMRI: Functional magnetic resonance imaging (fMRI) pre-
processing consisted of the removal of the first
6 volumes to ensure saturation and adaptation of the
subjects to the environment leaving 234 volumes for
further analysis, removal of non-brain structures,
motion correction, low-pass and high-pass temporal
filtering, spatial smoothing using a Gaussian kernel of
full-width half-maximum of 5 mm, intensity normal-
ization, rigid linear co-registration to the main struc-
tural image with 6 Degrees of Freedom (DOF), and
posterior affine linear registration algorithm to the
MNI152 standard template (12 DOF). Absolute head
movement was below 1.5 mm
� Amplitude of Low Frequency Fluctuations (ALFF) [25]
and fractional Amplitude of Low Frequency Fluctua-
tions (fALFF) [27] are low frequency oscillation mea-
sures of amplitude of the BOLD signal. ALFF is defined
as the total power within the frequency range
between 0.01 and 0.1 Hz. fALFF is defined as the
power within the low-frequency range (0.01–0.1 Hz)
split by the total power in the entire detectable
frequency range [28].

� Regional Homogeneity (ReHo) estimates the simi-
larity between the time series of a given voxel and
its (27) nearest neighbors [26], computed as the
Kendall's coefficient of concordance (KCC) [13]. The
KCC values are standardized and smoothed (4 mm
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