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a b s t r a c t

Neuroevolution of Augmenting Topologies (NEAT) has been a very successful algorithm for evolving
Artificial Neural Networks (ANNs) that adapt their structure and processing to the task that is required
from them. However, this algorithm is not always reliable when handling time related processes and this
may be due to its lack of explicit temporal elements within its structure. Of course, NEAT can handle time
dependent phenomena through the use of recurrences within the networks it builds, but it is well
known that simple recurrences do not easily allow for precise temporal processing due to the history
effect they induce on the networks. Many authors have argued for the introduction of other mechanisms,
which are also present in natural systems, such as variable or trainable propagation delays in the
synapses of the networks that must deal with precise temporal processing. In this paper, we carry out an
initial study of a new implementation of NEAT called τ-NEAT that includes the possibility of introducing
variable delays in the synapses of the networks NEAT constructs. These delays can affect both, regular
direct synapses or recurrent connections. To evaluate the performance of this implementation several
tests are carried out over different types of temporal functions and the results of the traditional version
of NEAT and τ-NEAT are compared.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The NEAT (neuroevolution of augmenting topologies) algorithm
[1,2] is a widely tested approach for evolving the weights and
structure of an artificial neural network (ANN). Its operation is
based on the use of history markers in genes to promote crossover
between similar topologies. Thus, species or niches in the popula-
tion are preserved by avoiding reproduction between historically
different individuals. Moreover, NEAT starts with simple feed-
forward ANNs that contain only input and output neurons and it
incrementally increases their complexity through structural muta-
tion operators, the add connection mutation and the add node
mutation [3]. This way, a designer does not need to predetermine
the architecture and number of nodes of the ANN needed for a
given task or function, and this is very useful when applying ANNs
to problems and domains where it is not easy to predetermine the
difficulty of the task. In this type of situations, when the network is
too small, the function is learnt without too much detail and large
errors may arise. On the other hand, when too many nodes are
used, if one is not very careful, overtraining may easily occur

leading to a lack of generalization capabilities of the networks in
the task. As a consequence, having an algorithm like NEAT that
automatically and simultaneously grows and trains a network until
its function is achieved with the required goodness is of great
importance. In fact, this algorithm has been successfully applied to
very different domains going from data classification [4,5] to
evolutionary robotic design [6], but its main application field has
been that of learning in dynamic domains, like video games [7–9]
or vehicle crash simulation [10].

Time dependent processing is quite important in many applica-
tions and NEAT is able to manage time dependent phenomena
through recurrent or feedback connections between neurons that
can be inserted using the add connection mutation operator. Conse-
quently, NEAT intrinsically supports the generation and training of
classical Recurrent Neural Networks, which are quite adept at work-
ing with dynamic processes that depend on sequences of events.

However, classical recurrent neural networks (RNN) present
several drawbacks when dealing with problems that require precise
timing [11], especially when modeling the underlying structure of
complex time series, and different approaches have been developed
to address them [11,12]. One of the most popular consists in
mimicking nature and modeling the length of the synapses through
the introduction of synaptic time delays both in the direct and in
the recurrent connections, leading to what have been called time
delay recurrent neural networks (TDRNN) [13–15].
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The use of delays when modeling dynamic processes is sup-
ported by a series of theoretical results in the signal processing
literature such as the embedding theorem [16,17]. This theorem
states that given an unknown dynamic system:

x nþ1ð Þ ¼ F x nð Þð Þ
where x(n) is the d-dimensional state vector of the system and
F some function; the information of which we obtain by sampling
an observable in time, that is through a temporal series given by

Y nð Þ ¼ h x nð Þð Þþr nð Þ
being h() a scalar function and r() a noise term, the geometric
structure of the multivariate dynamics of the system in the
absence of noise can be extended from observable Y(n) to a
D-dimensional space as

YR nð Þ ¼ Y nð Þ;Y n�tð Þ;…;Y n� D�1ð Þtð Þ½ �T

where τ is called the embedding delay.
What is important here is that this theorem states that having

an observable Y(n) that corresponds to one component of an
unknown dynamical system, the dynamic reconstruction of the
signal (in other words a precise model) is possible using vector
YR(n) from a dimension D onwards. In fact, it can be said that this
dimension must verify:

DZ2dþ1

which is a sufficient, but not necessary, condition. The minimum
dimension D that permits this reconstruction is called the embed-
ding dimension.

Note that what this means is that when we have a dynamic
system characterized by a measured signal, it is only necessary to
embed this signal in a higher dimensional space of dimension D by
taking D samples of the signal spaced by τ in order to make it
predictable or, in other words, its unambiguous modeling feasible.

Thus, according to the embedding theorem the only problem
now becomes how to obtain D and τ [18]. Translating it to our
problem, the challenge is to obtain these values autonomously for
a signal or process that is being modeled. Basically, how to obtain
the number of points that must be considered and the temporal
spacing between them when they are regularly spaced.

Going one step further, one could hypothesize that, in many
cases, lower dimensional embedding spaces could be used if the
samples were not evenly spaced in time and, consequently, if one
considered an uneven distribution of delays, a lower number of
points would be necessary to disambiguate many dynamic pro-
cesses. In fact several authors have already hinted towards this
conclusion [19].

Thus, to produce a good intrinsic model of a signal, it is
necessary to be able to determine what points of the signal must
be processed together. This is done in time delay based neural
networks, and, in particular, in TDRNNs by using the synapses as
delayers of signals, in other words, the signal transferred from one
neuron to another suffers a delay that is proportional to a value
that characterizes the synapse connecting the neurons. These
delays are a sort of representation of the different lengths these
connections could present, which would have a bearing on the
time signals would take to traverse them. Therefore, when a
neuron is processing its inputs, it is really processing points of
the signal that correspond to different times. Several authors have
reported quite interesting results using this approach in fields such
as robotics [20,21] or dynamic control [22,23].

However, the TDRNN related algorithms that have been devel-
oped do not provide for these networks to be grown and adapt their
topology and weights to the problems they are faced with. That is,
the designer must usually decide on the number of neurons and the
architecture of the TDRNN and a training algorithm is used to

provide values for the synaptic weights and delays. This takes us
back the problem of how to determine the right size and con-
nectivity of the network, and an obvious solution would be to adapt
NEAT so that it can automatically and incrementally generate
TDRNN type networks.

Thus the question that is posed here is whether adding the
capability of introducing synaptic delays to NEAT, which leads to
an algorithm we have called τ-NEAT, can improve the response of
the ANNs it produces. That is, we aim to analyze whether such a
higher degree of temporal processing is beneficial for NEAT when
applied to tasks that involve complex precise temporal patterns, in
particular, to time series prediction tasks or precise signal model-
ing tasks. In other words, does the introduction of time delays
allow NEAT to produce better signal modelers?

The paper is organized as follows. Section 2 deals with the
formal description of the τ-NEAT algorithm. Section 3 contains the
comparison experiments that have been performed using chaotic
temporal series and that show how τ–NEAT outperforms NEAT in
these complex cases. Finally, Section 4 is devoted to the presenta-
tion of the main conclusions of this study.

2. The τ-NEAT neuroevolutionary algorithm

To allow for the introduction of time delays, the original NEAT
algorithm was extended, thus creating the τ-NEAT algorithm. τ-
NEAT is basically a neuroevolutionary algorithm for growing neural
networks that may include recurrent connections and synaptic
delays. Fig. 1 displays the structure of a general or prototypic neural
network that τ-NEAT may obtain, where it can be observed that it
now includes a synaptic delay τij, in addition to the synaptic weight
wij corresponding to the synapse between neurons i and j. In fact,
this time delay is modeled through a buffer containing the last n
input values to that synapsis.

The basic operation of NEAT is described in [1] and it has been
slightly modified. Mainly, the synaptic delays have been included
in the NEAT chromosome and their value is applied over the buffer
establishing a sort of length of the synaptic connection. These
synaptic delays are integers, and as such they are included in the
chromosome of the networks within the synaptic encoding. This
implies that they must have their own parametric mutation
operator. Thus, in terms of evolution the τ-NEAT approach works

Fig. 1. Structure of a τ-NEAT neural network.

P. Caamaño et al. / Neurocomputing 150 (2015) 43–4944



Download English Version:

https://daneshyari.com/en/article/412116

Download Persian Version:

https://daneshyari.com/article/412116

Daneshyari.com

https://daneshyari.com/en/article/412116
https://daneshyari.com/article/412116
https://daneshyari.com

