
A L-MCRS dynamics approximation by ELM for Reinforcement Learning

Jose Manuel Lopez-Guede a,d,n, Borja Fernandez-Gauna b,d, Jose Antonio Ramos-Hernanz c

a Department of Systems Engineering and Automatic Control, University College of Engineering of Vitoria, Basque Country University (UPV/EHU),
Nieves Cano 12, 01006 Vitoria, Spain
b Department of Software and Computing Systems, University College of Engineering of Vitoria, Basque Country University (UPV/EHU), Nieves Cano 12, 01006
Vitoria, Spain
c Department of Electrical Engineering, University College of Engineering of Vitoria, Basque Country University (UPV/EHU), Nieves Cano 12, 01006 Vitoria, Spain
d Computational Intelligence Group, Basque Country University (UPV/EHU), Spain

a r t i c l e i n f o

Article history:
Received 29 October 2013
Received in revised form
6 January 2014
Accepted 29 January 2014
Available online 2 October 2014

Keywords:
Extreme learning machines
Linked multicomponent robotic systems
Hose control
Reinforcement learning

a b s t r a c t

Autonomous task learning for Linked Multicomponent Robotic Systems (L-MCRS) is an open research
issue. Pilot studies applying Reinforcement Learning (RL) on Single Robot Hose Transport (SRHT) task
need extensive simulations of the L-MCRS involved in the task. The Geometrically Exact Dynamic Spline
(GEDS) simulator used for the accurate simulation of the dynamics of the overall system is a time
expensive process, so that it is infeasible to carry out extensive learning experiments based on it. In this
paper we address the problem of learning the dynamics of the L-MCRS encapsulated on the GEDS
simulator using an Extreme Learning Machine (ELM) approach. Profiting from the adaptability and
flexibility of the ELMs, we have formalized the problem of learning the hose geometry as a multi-variate
regression problem. Empirical evaluation of this strategy achieves remarkable accurate approximation
results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A relevant taxonomy of different types of Multi-Component
Robotic Systems was introduced in [1]. That taxonomy was struc-
tured focusing on the degree of coupling among the robots compos-
ing the system, characterized by the strength of their coupling. The
first type of systems is those where there is no physical coupling,
namely Uncoupled systems. Examples of this kind of systems are
robot soccer teams, teams of unmanned aerial vehicles (UAV) and
uncoupled swarms. A second type of systems arises when a rigid
physical coupling is considered between the robotic components,
generating then a new unit with new physical and functional
properties. This type of systems is called Modular systems. Some
examples are PolyBot, M-TRAN, Proteo, some cases of S-bots and
industrial robots properly coupled. The last type of systems is
composed of elements coupled through a passive non-rigid element,
and is called Linked systems. Being more specific in the discussion
on the third type of systems, Linked Multi-Component Robotic
Systems (L-MCRS) [1] are autonomous robot groups attached to a
non-rigid unidimensional object linking them, which imposes con-
traints in the robot dynamics which interfere in their coordination,
introducing strong non-linearities in the dynamics of the system,
and consequent uncertainty in the control of the robots. It is also a

non-linear transmission medium for the dynamical influences
among robots. With regard to the applications in which this kind
on systems can play an important role, most of them are related to
some function the non-rigid link itself. The paradigm is illustrated by
the transportation of a hose-like object [2,3], more specifically the
transportation of the hose tip to a given location in the working
space while the other extreme is attached to a fixed point. The
paradigmatic task is the Single Robot Hose Transport (SRHT).
Achieving SRHT control can be generalized to more complex tasks.
These complex tasks include the transport of liquids as water (for
supply, for fire fighting or for smart orchards), paint, fuel, etc., the
transport of electrical energy or even air (compressed or not), among
others. They can also perform tasks of collecting liquids as water in
floodings or fuel, oil and toxic substances in accidents, or of
collecting semisolids as garbage. To simulate the dynamics of this
kind of systems and the effect of a robot action on its components
(mainly on the hose), we use an accurate hose dynamics model
based on Geometrically Exact Dynamic Splines (GEDS) [2], which is
computationally expensive.

Autonomous learning of control tasks in L-MCRS is still an open
research issue. We have used Reinforcement Learning (RL) tech-
niques to deal with it, modeling the problem as a Markov Decision
Problem (MDP). There are several RL strategies, but when a model-
free strategy is chosen, learning performs the repetition of the
experiments a large number of times. In many domains, this is not
a problem by itself, however, in the domain of L-MCRS where the
experimentation is carried out by means of a computationally

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.01.076
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: jm.lopez@ehu.es (J.M. Lopez-Guede).

Neurocomputing 150 (2015) 116–123

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.01.076
http://dx.doi.org/10.1016/j.neucom.2014.01.076
http://dx.doi.org/10.1016/j.neucom.2014.01.076
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.01.076&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.01.076&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.01.076&domain=pdf
mailto:jm.lopez@ehu.es
http://dx.doi.org/10.1016/j.neucom.2014.01.076


expensive simulator, the realization of the reported experimental
results [3–7] consumes long times.

To solve this issue, learning approximations to the GEDS model
by Artificial Neural Networks (ANN) have been proposed [8]. A
trained ANN model provides very fast responses allowing us to
perform exhaustive simulations for RL. In this paper we focus on
the development of an Extreme Learning Machines (ELM) approx-
imation to the GEDS model. ELMs are very adaptable and flexible
neural networks, and besides, they have several interesting prop-
erties: their training is very fast, they are easy to implement and
need minimal human intervention, allowing the formulation of
the GEDS model learning as multi-variable regression task. We
analyze the accuracy of the approximation to the GEDS model,
concluding that the tradeoff between the quality of the approx-
imation and its response speed allows further use of the approx-
imate model embedded in RL experiments.

The paper is structured as follows. Section 2 recalls the defi-
nitions of some computational methods involved in the developed
work. Section 3 introduces the problem that we are addressing in
the paper, while Section 4 presents the ELM based approach to
solve it. Section 5 details the experimental setup that has been
carried out, and Section 6 discusses the obtained experimental
results. Finally, Section 7 presents out conclusions and addresses
future work.

2. Computational methods

In this section we review computational methods used along the
paper which are essential to understand the approximation problem
that we are facing, its magnitude, and the solutions that we are
reporting. Section 2.1 gives a review on Geometrically Exact Dynamic
Splines (GEDS) to understand how the unidimensional element of
the L-MCRS is modeled. Section 2.2 reviews some basic concepts of
Reinforcement Learning (RL), specifically the Q-Learning (Q-L) and
TRQ-Learning (TRQ-L) algorithms. Finally, Section 2.3 gives a short
review of Extreme Learning Machines (ELMs).

2.1. Geometrically exact dynamic splines

We assume a simplified L-MCRS model where the hose is a
one-dimensional object deployed in the two dimensional space of
the ground. The basic geometrical model of the hose is a spline [9],
that is, a linear combination of control points pi where the linear
coefficients are the polynomials Ni(u) which depend on the len-
gth of the curve parameter u defined in ½0;1Þ. Formally: qðuÞ ¼
∑n

i ¼ 0NiðuÞ � pi, where Ni(u) is the polynomial associated to the
control point pi, qðuÞ is the point of the curve at the parameter
value u. It is possible to travel over the curve by varying the value
of parameter u, starting at one end for u¼0, finishing at the other
end for u¼1. We need to specify some specific positions over the
curve corresponding to the robot positions. Therefore, a more
appropriate model is a B-Spline defined as follows. Given nþ1
control points fp0;…;png and a knots' vector U¼ fu0;…;umg, the
B-spline curve of degree p is qðuÞ ¼∑n

i ¼ 0Ni;pðuÞ � pi, where Ni;pðuÞ
are B-spline basis functions of degree p (p¼3 in this work), built
using the Cox–de-Boor's algorithm [10]. Furthermore, we expect
that our systemwill be changing in time, so the appropriate model
is a dynamic B-spline whose control points depend on the time
parameter t, that is qðu; tÞ ¼∑n

i ¼ 0Ni;pðuÞ � piðtÞ.
In hose transport systems, either by a single robot or a team of

robots, the dynamics of the B-spline control points are determined
by the forces exerted by the robots and the intrinsic forces acting
on the hose: stretching, bending, inertia, friction, and twisting
moment. The dynamical model for the hose simulation, based on
the GEDS approach [11] and Cosserat rod approach [12], is detailed

in [2,3,13]. The simulation of the effect of the robot control
commands on the hose shape is computed using the following
linear local approximation model [2]: Fp ¼ Jpr � Fr , where the
relation between the forces applied on the robot attaching points
Fr and the resulting forces on the spline control points Fp are given
by the Jacobian matrix Jpr relating robot positions and control
points:

Jpr ¼

∂qður1 Þ
∂p0

⋯ ∂qðurl Þ
∂p0

⋮ ⋱ ⋮
∂qður1 Þ
∂pn

⋯ ∂qðurl Þ
∂pn

0
BB@

1
CCA¼

N0ður1 Þ ⋯ N0ðurl Þ
⋮ ⋱ ⋮

Nnður1 Þ ⋯ Nnðurl Þ

0
B@

1
CA; ð1Þ

where the robot positions uri correspond to the B-spline knots.

2.2. Reinforcement learning

Reinforcement Learning (RL) [14] is a class of learning algo-
rithms which assumes that the environment-agent system can be
modeled as a discrete time stochastic process formalized as a
Markov Decision Process (MDP) [15,16], defined by the tuple
〈S; A; T ; R〉, where S is the state space, A is the action repertoire,
specifically As are the actions allowed in state sAS, T : S � As �
S-R is the probabilistic state transition function, and R :
S� As-R is the immediate reward function. A policy π : S-As is
the probabilistic decision of the action aAAs to be taken in state
sAS. RL procedures look for optimal action selection policies
maximizing the total reward received by the agent.

2.2.1. Q-Learning

Algorithm 1. Q-Learning algorithm.

Initialize Q ðs; aÞ arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):

Choose a from s using policy derived from Q
Take action a, observe reward r and new state s0

Q ðs; aÞ’Q ðs; aÞþα rþγ max
a0

Q ðs0; a0Þ�Q ðs; aÞ
� �

s’s0

until s is terminal

Q-Learning [17] is an unsupervised model free RL algorithm
that learns the optimal policy in environments specified by Finite
MDP (S and A are finite sets). The learning process is specified in
Algorithm 1. The main idea of the algorithm is to fill a lookup table
Q ðs; aÞ of dimensions jSj � jAj, which is initialized arbitrarily, being
updated following the rule specified by the following equation:

Q ðst ; atÞ’Q ðst ; atÞþα rtþ1þγ �max
a

Q stþ1; að Þ�Q st ; atð Þ
h i

: ð2Þ

It has been proved [18] that, for a discrete FMDP environment, the
Q-Learning algorithm converges with probability one to the
optimal policy if α decrease complies with the stochastic gradient
convergence conditions and if all actions are infinitely sampled in
all states.

2.2.2. TRQ-learning

Algorithm 2. TRQ-Learning algorithm.

Initialize Q ðs; aÞ with arbitrary random values
Initialize Tðs; aÞ ¼ �¿̈œ, Rðs; aÞ ¼ 0 for all states sAS and actions

aAA.
Repeat (for each episode):
Initialize s

J.M. Lopez-Guede et al. / Neurocomputing 150 (2015) 116–123 117



Download English Version:

https://daneshyari.com/en/article/412124

Download Persian Version:

https://daneshyari.com/article/412124

Daneshyari.com

https://daneshyari.com/en/article/412124
https://daneshyari.com/article/412124
https://daneshyari.com

