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a b s t r a c t

In this paper, we present a method for reconstructing images or volumes from a partial set of
observations, under the Rayleigh distributed multiplicative noise model, which is the appropriate
algebraic model in ultrasound (US) imaging. The proposed method performs a variable splitting to
introduce an auxiliary variable to serve as the argument of the total variation (TV) regularizer term.
Applying the Augmented Lagrangian framework and using an iterative alternating minimization method
lead to simpler problems involving TV minimization with a least squares term. The resulting Gauss
Seidel scheme is an instance of the Alternating Direction Method of Multipliers (ADMM) method for
which convergence is guaranteed. Experimental results show that the proposed method achieves a
lower reconstruction error than existing methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Images acquired using any modality need to be denoised before
further processing or analysis. The problem of estimating the
image from the noisy and possibly incomplete observations is an
ill-posed one [1], necessitating regularization or some assumption
on the nature of the image. The statistical distribution of the noise
and the algebraic observation model that leads to the image
formation depends on the physics of the modality. Further,
depending on hardware and sensing limitations as well as trans-
mission errors, the image may need to be reconstructed from a set
of partial observations. This is also the case in the sampling/
acquisition methodology known as compressive sensing [2,3]
wherein the image needs to be reconstructed from an under-
sampled set of incoherent observations.

Several methods exist to solve the denoising and reconstruc-
tion problems for the classical additive and Gaussian noise model,
using non-smooth regularization such as total variation (TV) [4–6]
which encourages the solution to be piece-wise smooth. Recent
methods have focussed on the augmented Lagrangian/alternating
direction method of multipliers (AL/ADMM) method [7,8] to solve
the convex optimization formulations for these TV regularized
problems [9–11] because of its computational speed. In this paper,
we propose a TV and ADMM based method for image denoising
and reconstruction from partial observations for the case when the

noise is multiplicative and Rayleigh distributed, which is the
model in Ultrasound (US) imaging for the radio frequency (RF)
envelope image [12].

Ultrasound has emerged as a popular medical imaging mod-
ality in a number of medical imaging applications because of its
low cost, wide reach, flexibility, lack of radiation, and intra-
operability [13–15]. Because 2D US images are acquired as slices
representing a thin plane from the volume, it is difficult to
reproduce for follow-up, i.e., image at the exact location again.
Therefore three dimensional (3D) US imaging is being increasingly
used for characterizing diseases such as carotid atherosclerosis,
requiring a 3D volume to be reconstructed from a series of 2D
slices. The slices can be acquired mechanically in a predetermined
manner, or freehand wherein the user can manually position and
orient the probe. It has also been reported that segmentation and
classification based on 3D US has advantages compared to those
based on 2D [16,17].

1.1. Related works

For the additive and Gaussian noise case, solvers for 2D and 3D
reconstruction from partial data using TV regularization include
the Sparse Reconstruction by Separable Approximation [18], (Con-
strained) Split Augmented Lagrangian Shrinkage Algorithm [11,19],
split Bregman method [10], Fast TV deconvolution (FTVd) [9], and
the Nesterov method based solvers, mxTV [20], and NESTA [21].
Sparse MRI [22] for MRI reconstruction also uses a TV
regularizer term.
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A despeckling method for US images called Rayleigh Log-
Euclidean Total Variation (RLTV) was proposed in [23,24], in which
a logarithmic compression was used on the image, and then a TV
regularizer term was applied on the transformed image. The
resulting convex optimization problem was solved iteratively
using Newton's method. The same denoising formulation was
solved in multiplicative image denoising by augmented Lagrangian
(MIDAL) method [25] in the context of Synthetic Aperture Radar
(SAR) images, but solved using an AL/ADMM method. MIDAL also
does not use a logarithmic compression. Another TV based
denoising method for gamma distributed multiplicative speckle
noise is the variational formulation based on mth root transforma-
tion called linearized proximal alternating minimization algorithm
(LPAMA/mV) [26,27]. This method was proposed for the applica-
tion of multi-look SAR images. The Nakagami distribution was
assumed as the statistical model in the denoising method pre-
sented in [28]. A denoising method was presented in [29],
assuming that the multiplicative noise (in natural images) was
one-sided exponentially distributed, and with an ℓ1 data fidelity
term.

A variational model for deblurring under multiplicative noise
was proposed in [30], which uses a quadratic penalty term and is
strictly convex under mild conditions. The formulation is solved
using a primal-dual algorithm.

The above listed methods solve the despeckling problem when
there is no loss of pixels. To solve the harder problem of image
reconstruction, in [24], the authors first perform a voxel inter-
polation over the grid to obtain a noisy image without missing
pixels, and then apply RLTV to despeckle it.

Interpolation algorithms such as the Pixel Nearest Neighbor
(PNN) [31], Voxel Nearest Neighbor (VNN) [31], and Pixel-Based
Interpolation with Distance Weighting (PBM-DW) [32] do not use
any regularization or a priori information about the volume to be
reconstructed. A comprehensive review of interpolation methods
for US reconstruction can be found in [14].

Other non-TV-based methods for 3D US reconstruction have
been reported in the literature. These include the Cyclic Regular-
ized Savitzky–Golay (CRSG) filter method [33] which estimates
unobserved voxels through a local 3D least squares polynomial
fitting. Results reported in this work showed that CRSG was able to
obtain a lower normalized reconstruction error (0.032) than PNN-
DW (0.047) in 3D synthetic experiments. Others such as [13]
perform an interpolation and coordinate mapping over each
unobserved voxel. Spline interpolation to connect regions across
observed slices acquired freehand has also been proposed [34].
In this work, results were reported for different conditions of the
carotid artery (normal or with plaque stenosis), without compar-
ison with existing methods. A despeckling filter based on aniso-
tropic diffusion without a linear approximation (DPAD) was
proposed in [35] for denoising and separating the speckle
component.

1.2. Contributions

In this paper, we extend the TV regularized despeckling
formulation from [23,25] to the more general problem of estimat-
ing the image from a partial set of noisy pixels. This is a more
difficult and ill-posed [1] problem than denoising, because some
pixel/voxel values are unknown. This is a relevant problem from
the point of view of reconstructing a 3D volume from a partial set
of acquired 2D slices. We solve the resulting convex problem using
an AL/ADMM approach which leads to an alternating minimiza-
tion in which at every iteration a sequence of simpler problems
has to be solved. The proposed method for reconstruction is a
more general formulation of the method for solving the denoising
problem alone. We test the proposed method with synthetic data

simulating both linear mechanical and random freehand scanning,
as well as real US images. Preliminary results were presented in
[36], which showed that the proposed method is more accurate
than interpolation methods, and is faster than all methods except
the Pixel Nearest Neighbor (PNN) interpolation which is the
crudest interpolation technique. In this paper, we compare our
method against PNN interpolation followed by despeckling meth-
ods which take into account the statistical model. Synthetic
experiments show that the proposed method achieves a lower
mean square error than existing methods.

In Section 2, we formulate the optimization problems to be
solved for estimating the despeckled image, with and without
missing data. We present the proposed approach for solving the
denoising and reconstruction problems in Section 3. In Section 4,
we present experimental results on 2D and 3D reconstruction,
with synthetic examples and real US images. Section 5 concludes
the paper.

2. Problem formulation

The image is represented as a vector, say, in lexicographic
ordering, as xARn, where n is the number of pixels or voxels.
When there is no loss of pixels, the dimensionality of the observed
image y is the same as that of x. Each element of y is the product of
the corresponding element from x and the corresponding element
from the noise field η. The observation model is therefore the
element-wise multiplication:

y¼ x � η: ð1Þ

In the case of partial observations, the number of elements of y
is less than the size of x. This is the case in the problem of
inpainting, wherein pixels damaged or lost because of transmis-
sion errors have to be estimated [37–39]. The acquisition metho-
dology of compressive sensing also involves observing an
incomplete set of incoherent observations to speed up and
simplify the sensing process and hardware [22]. When the number
of observed pixels is mon, we model the observation process as a
multiplication of xARn by a linear operator AARm�n:

y¼ ðAxÞ � η: ð2Þ

In this case, y;ηARm. The matrix A maps a pixel or a voxel in the
grid to a pixel in the set of observed slices, and discards the pixels
or voxels in x which do not correspond to a pixel in y. Hence, the
matrix A is essentially the n� n identity matrix with n�m rows
(corresponding to non-observed voxels) removed. The position
and orientation of each slice must be known to construct the
matrix A. For a denoising problem, i.e., when all elements are
observed (m¼n), it is equal to the identity matrix A ¼ I.

Assuming that the speckle field η is Rayleigh distributed, when
there are no missing observations the likelihood is

pðyjxÞ ¼ ∏
n

i ¼ 1

yi
xi

exp � y2i
2xi

� �
; ð3Þ

where xi is the ith element of the vector x. After logarithmic
compression, this leads to the log-likelihood function:

Eðy; xÞ ¼ � log pðyjxÞð Þ ¼ ∑
n

i ¼ 1

y2i
2xi

þ log xi

� �
: ð4Þ

In [40], a logarithmic compression f ¼ log ðxÞ is applied and a
TV regularizer term is applied on the transformed variable, leading
to the convex optimization problem:

min
f

∑
i

y2i
2
e� f i þ f i

� �
þλ
2
TVðfÞ; ð5Þ
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