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We present an improved, biologically inspired and multiscale keypoint operator. Models of single- and
double-stopped hypercomplex cells in area V1 of the mammalian visual cortex are used to detect stable
points of high complexity at multiple scales. Keypoints represent line and edge crossings, junctions and
terminations at fine scales, and blobs at coarse scales. They are detected by applying first and second
derivatives to responses of complex cells in combination with two inhibition schemes to suppress
responses along lines and edges. A number of optimisations make our new algorithm much faster than
previous biologically inspired models, achieving real-time performance on modern GPUs and compe-
titive speeds on CPUs. In this paper we show that the keypoints exhibit state-of-the-art repeatability in
standardised benchmarks, often yielding best-in-class performance. This makes them interesting both in
biological models and as a useful detector in practice. We also show that keypoints can be used as a data
selection step, significantly reducing the complexity in state-of-the-art object categorisation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Accurate detection of stable interest points is a central task in
many object detection and recognition approaches, and an impor-
tant part of early human visual processing. While many computer
vision algorithms have been motivated by insights gained from
biological vision, including image processing with Gabor wavelets
and current work on deep hierarchies, existing biologically plau-
sible keypoint detection algorithms are limited to a single scale [1],
or are computationally too complex to run in real time on a CPU [2].
Furthermore, no comparative benchmarking of biological keypoint
models is available in the literature. In this paper, we present an
optimised keypoint extraction algorithm based on existing models
of end-stopped cells in the mammalian striate cortex and evaluate
its performance.

Early processing in the area V1 of the mammalian visual cortex
has been extensively studied in the literature. The image signal
from retina enters V1 via the Lateral Geniculate Nucleus (LGN) and
is then processed by layers of the so-called simple cells, complex
cells and hypercomplex (or end-stopped) cells. Simple cells, often
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modelled using oriented Gabor filters, respond to lines and edges.
Complex cells provide more position-invariant responses to both.
End-stopped cells respond to line terminations (single-stopped
cells), as well as to corners and blobs (double-stopped cells). Earlier
work has shown that models of these cells can act as a general-
purpose keypoint detector, but they require convolutions with large
filter kernels, making them prohibitively slow for most applications
in computer vision and cognitive robotics.

The main contributions of this paper are (i) a new and optimised
algorithm which is fast enough to run on a CPU and which runs in
real time on GPUs due to its parallel nature; and (ii) extensive
benchmarking of the algorithm, showing state-of-the-art perfor-
mance compared to best available algorithms, and setting several
records in terms of repeatability and precision. To the best of our
knowledge, this is the first extensive comparison of a biological
model with the state of the art in computer vision. We have released
the CPU and GPU implementations of our detector as Free Software,
so others can use them for real-world applications.

1.1. Related work

There exist a number of approaches for detecting interest
points in images which are stable under a wide range of transfor-
mations, including scaling, translation and rotation. Early work on
corner detection used structure tensors [3,4], which have recently
been extended to provide scale invariance [5]. Other computational
approaches include Difference of Gaussians [6] and the Determinant of
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Hessian [7]. Meaningful blobs have been detected using region-based
methods [8,9] and by other affine-invariant region detectors. Addi-
tional interest point and region detectors are described in [10].

Biologically inspired approaches to keypoint detection attempt
to model early processing stages of the mammalian visual cortex
(area V1), consisting of layers of cells. The so-called simple cells are
modelled using a bank of bandpass filters, usually Gabor wavelets.
Beyond this, responses of complex and end-stopped cells are often
represented implicitly, as a spatial combination of simple-cell
responses [11,12]. However, there have also been efforts to model
complex and end-stopped cells directly, in order to obtain an
explicit representation of keypoints corresponding to strong activa-
tions of complex cells [1,13], but there is no comparative bench-
marking of such models against state-of-the-art keypoint detection
in computer vision.

Our model follows the early single-scale model of Heitger et al.
[14], which consists of single and double end-stopped cells and
two inhibition schemes. Several extensions have been proposed
[2,15], capable of detecting keypoints at multiple scales and
adapting NCRF inhibition [16] to keypoints. Our new model is
inspired on the one by Rodrigues and du Buf [2], which is too slow
for practical use, taking hours on large images. In this paper, we
expand on our earlier work presented in [17].

We completely reformulate and re-implement the algorithm.
Instead of modelling individual cells, as in [2], we model popula-
tions of cells as activation maps, obtained by parallel filtering
operations which can be efficiently evaluated on modern CPUs
and GPUs. We use a Gaussian pyramid combined with sub-pixel
localisation and show that this step significantly improves repeat-
ability compared to [2]. We also introduce a scale selection method
which reduces the redundancy of detected keypoints. These
changes result in a significant improvement in both speed and
accuracy, such that biologically inspired keypoints are now suitable
for real-time applications. We benchmark our improved approach
on standard datasets, showing that it improves on both [2] and the
state of the art in computer vision.

2. An optimised computational model of V1

Our approach is based on area V1 of the mammalian visual
cortex, with layers of specialised cells responding to increasingly
complex patterns. At the highest level, responses of single and
double end-stopped cells are used to detect stable events (corners,
blobs and terminators) at all scales.

Basically, the keypoint model works as follows. Simple and
complex cells respond to lines and edges. Assume that there is a
corner formed by a vertical and a horizontal edge, and the goal is
to detect only the corner position. Complex cells tuned to the edge
orientations will produce a maximum response at the edge positions.
Cells tuned to other orientations will also respond at the edges, but
less. Now, single and double end-stopped cells are modelled by first
and second derivatives of the responses of complex cells, in the same
orientations as those of the complex cells; see Fig. 1 (top).

This implies that first derivatives (single-stopped cells) will
produce responses astride the edges: on both sides but zero in the
middle. Second derivatives (double-stopped cells) will also produce
responses, but these are maximum at the edge positions and they
decrease on both sides. Hence, when all responses are summed over
all orientations, there will be a peak at the corner, where all cells
respond, but also significant responses (derivatives) at and astride the
two edges. Responses along edges are a common problem in keypoint
detection. For example, difference of Gaussian blob detection used by
the SIFT algorithm produces strong responses along edges, just like
complex cells in our model, which results in poorly localised features.
SIFT uses the ratio of eigenvalues of the Hessian matrix to discard

keypoints along edges. In our model, we apply two inhibition
schemes to the responses of complex cells to suppress such responses
when applying end-stopped cells. Tangential inhibition serves to
suppress all responses astride the edges. Radial inhibition suppresses
responses at the edges but, because of the orthogonal kernels, not at
the corner. For a detailed explanation of the inhibition schemes used
in our algorithm, we refer to Fig. 10 in [14].

2.1. Multi-scale filter kernels as V1 model

The multi-scale extension of the Heitger et al. model [2] applies
the same derivation and inhibition schemes. Obviously, at coarser
scales the sizes of all cell models are bigger, and this makes the
multi-scale model so expensive in terms of computations.

In our new model, each layer of cells is modelled as a linear
filtering operation, where the kernel corresponds to a typical weight
profile of a particular type of cell. Unlike the original computational
approach [2], this formulation allows for easy parallel implementation
on GPUs and consistent use of filtering in the frequency domain. As is
common, we define simple cells using complex Gabor filters
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with X =x cos @+y sin 8,y =y cos —x sin 0 and y=0.5.  is the
wavelength (in pixels) and sigma is the receptive field size (in pixels),
which are related by 6/1=0.56. 8 determines the filter orientation
(typically eight orientations are used). Simple cell responses R are
obtained by convolving the image I with the complex Gabor filter, and
complex cells C are defined as the moduli of the simple cell responses

Rio=1I%g10: Cro=|Rygl. (2)

Simple cells respond to line and edge stimuli, complex cells respond
to both and exhibit more spatial invariance. All other cells are defined
by employing combinations of Gaussian filter kernels. Let G(6) be a
2D Gaussian function with standard deviation 6 centered at the
origin, and G(x, y, 6) its equivalent centered at x, y. Let ds = 0.6 sin
and dc =0.64 cos @ be offsets from the kernel centre. Then kernels
representing single- and double-stopped cells are defined by

k5.0 = G(ds, —dc, &)~ G(—ds, dc, 6), A3)

Ko = G(6)—1 G(—2ds, 2dc, 6)— 1 G(2ds, —2dc, 6). )

The parameters used in this step were carefully selected in order to
obtain best results. 6 is used to control the amount of smoothing
performed at this step, which is useful for reducing the effect of noise,
and is typically set to ¢/2. When 6 approaches zero, the kernels
become a combination of Dirac functions. This can be a useful
optimisation at the expense of noise sensitivity, so we use this in
our CPU-based implementation. End-stopped cell response maps are
then computed by convolutions

SLQ = Clﬂ*kiﬂ; DLG = Clﬂ*kia' (5)

In order to suppress responses along lines and edges, tangential and
radial inhibition are used, as in [2]. Each one is modelled as a layer of
inhibition cells represented by the two kernels

Kip= —2G(6)+G(dc, ds, 6)+G(—dc, —ds, 6), 6)

KRy = G(dc/2,ds/2,6)+G(—dc/2, —ds/2,6). (7)

Inhibition cell response maps are obtained by convolving the
responses of complex cells with these kernels

[o=Croxkip: 1§ 5=C,0%2G(6)~Crg, z/2%AKsy ®)

where A determines the inhibition strength, usually set between 4 and
16. Note that radial inhibition uses two response maps of complex
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