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a b s t r a c t

The extension of machine learning methods from static to dynamic environments has received
increasing attention in recent years; in particular, a large number of algorithms for learning from
so-called data streams has been developed. An important property of dynamic environments is non-
stationarity, i.e., the assumption of an underlying data generating process that may change over time.
Correspondingly, the ability to properly react to so-called concept change is considered as an important
feature of learning algorithms. In this paper, we propose a new type of experimental analysis, called
recovery analysis, which is aimed at assessing the ability of a learner to discover a concept change
quickly, and to take appropriate measures to maintain the quality and generalization performance of the
model. We develop recovery analysis for two types of supervised learning problems, namely classifica-
tion and regression. Moreover, as a practical application, we make use of recovery analysis in order to
compare model-based and instance-based approaches to learning on data streams.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The development of methods for learning from so-called data
streams has been a topic of active research in recent years [11,14].
Roughly speaking, the key idea is to have a system that learns
incrementally, and maybe even in real-time, on a continuous and
potentially unbounded stream of data, and which is able to properly
adapt itself to changes of environmental conditions or properties of
the data generating process. Systems with these properties have
already been developed for different machine learning and data
mining tasks, such as clustering and classification [13].

An extension of data mining and machine learning methods to
the setting of data streams comes with a number of challenges. In
particular, the standard “batch mode” of learning, in which the
entire data as a whole is provided as an input to the learning
algorithm (or “learner” for short), is no longer applicable. Corre-
spondingly, the learner is not allowed to make several passes
through the data set, which is commonly done by standard
methods in statistics and machine learning. Instead, the data must
be processed in a single pass, which implies an incremental mode
of learning and model adaptation.

Domingos and Hulten [9] list a number of properties that
an ideal stream mining system should exhibit, and suggest

corresponding design decisions: the system uses only a limited
amount of memory; the time to process a single record is short
and ideally constant; the data is volatile and a single data record
accessed only once; the model produced in an incremental way is
equivalent to the model that would have been obtained through
common batch learning (on all data records so far); the learning
algorithm should react to concept change (i.e., any change of the
underlying data generating process) in a proper way and maintain
a model that always reflects the current concept.

This last property is often emphasized as a key feature of
learning algorithms, since non-stationarity is arguably the most
important difference between static and dynamic environments.
Indeed, while the idea of an incremental learning is crucial in the
setting of data streams, too, it is not entirely new and has been
studied for learning from static data before. The ability of a learner
to maintain the quality and generalization performance of the
model in the presence of concept drift, on the other hand, is a
property that becomes truly important when learning under
changing environmental conditions.

In this paper, which is an extended version of the conference
paper [28], we propose a new type of experimental analysis, called
recovery analysis. With the help of recovery analysis, we aim at
assessing a learner's ability to maintain its generalization perfor-
mance in the presence of concept drift. Roughly speaking, recovery
analysis suggests a specific experimental protocol and a graphical
presentation of the learner's performance that provides an idea of
how quickly a drift is recognized, to what extent it affects the
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prediction performance, and how quickly the learner manages to
adapt its model to the new condition. Our method makes use of
real data, albeit in a modified and specifically prepared form,
which is a main prerequisite for conducting controlled experi-
ments under suitable conditions; therefore, it could be seen as a
“semi-synthetic” approach.

Another contribution of the paper is an experimental study,
which illustrate the usefulness of recovery analysis by comparing
different types of learning methods with regard to their ability to
handle concept drift. In particular, we turn our attention to the
comparison of instance-based and model-based approaches to
learning on data streams.

The remainder of the paper is organized as follows. By way of
background, the next section recalls some important aspects of
learning on data streams, with a specific emphasis on handling
concept drift. Our method of recovery analysis is then introduced
in Section 3. In Section 4, we contrast model-based with instance-
based learning approaches and motivate their comparison, prior to
describing the experiments and results in Section 5. We end the
paper with some concluding remarks and an outlook on future
work in Section 6. In Appendix A, we outline the learning methods
that we included in our case study.

2. Learning under concept drift

We consider a setting in which an algorithm A is learning on a
time-ordered stream of data S¼ ðz1; z2; z3;…Þ. Since we are mainly
interested in supervised learning, we suppose that each data item
zt is a tuple ðxt ; ytÞAX�Y consisting of an input xt (typically
represented as a vector) and an associated output yt, which is the
target for prediction. In classification, for example, the output
space Y consists of a finite (and typically small) number of class
labels, whereas in regression the output is a real number.

At every time point t, the algorithm A is supposed to offer a
predictive model Mt : X-Y that has been learned on the data
seen so far, i.e., on the sequence St ¼ ðz1; z2;…; ztÞ. Given a query
input xAX, this model can be used to produce a prediction

ŷ ¼MtðxÞAY

of the associated output. The accuracy of this prediction can be
measured in terms of a loss function ℓ : Y�Y-R, such as the 0/1
loss in the case of classification or the squared error loss in
regression. Then, the prediction performance of Mt is defined in
terms of the expected loss, where the expectation is taken with
respect to an underlying probability measure P on Z¼X�Y. This
probability measure formally specifies the data generating process.

If the algorithm A is truly incremental, it will produce Mt

solely on the basis of Mt�1 and zt , that is, Mt ¼AðMt�1; ztÞ. In
other words, it does not store the entire sequence of previous
observations z1;…; zt�1. Many algorithms, however, store at least
a few of the previous data points, typically the most recent ones,
which can then also be used for model adaptation. In any case, the
number of observations that can be stored is normally assumed to
be finite, which excludes the possibility of memorizing the entire
stream. A batch learner AB, on the other hand, would produce the
model Mt on the basis of the complete set of data fz1;…; ztg. Note
that, although A and AB have seen the same data, AB can exploit
this data in a more flexible way. Therefore, the models produced
by A and AB will not necessarily be the same.

As mentioned before, the data generating process is character-
ized by the probability measure P on Z¼X�Y. Under the
assumptions of stationarity and independence, each new observa-
tion zt is generated at random according to P, i.e., the probability

to observe a specific zAZ is given by1

PðzÞ ¼ Pðx; yÞ ¼ PðxÞ � PðyjxÞ:
Giving up the assumption of stationarity (while keeping the one of
independence), the probability measure P generating the next
observation may possibly change over time. Formally, we are thus
dealing, not with a single measure P, but with a sequence of
measures ðP1;P2;P3;…Þ, assuming that zt is generated by Pt . One
speaks of a concept change if these measures are not all equal [19].

In the literature, a distinction is made between different causes
and types of concept change [12]. The first type refers to a sudden,
abrupt change of the underlying concept to be learned and is often
called concept shift (Pt is very different from Pt�1). Roughly
speaking, in the case of a concept shift, any knowledge about the
old concept may become obsolete and the new concept has to be
learned from scratch. The second type refers to a gradual evolution
of the concept over time. In this scenario, old data might still be
relevant, at least to some extent. Finally, one often speaks about
virtual concept drift if the change only concerns PðxÞ, i.e., the
distribution of the inputs, while the concept itself, i.e., the
conditional distribution PðyjxÞ, remains unchanged [31]. To guar-
antee optimal predictive performance, an adaptation of the model
might also be necessary in such cases. In practice, virtual and real
concept drift will often occur simultaneously.

Learning algorithms can handle concept change in a direct or
indirect way. In the indirect approach, the learner does not
explicitly attempt to detect a concept drift. Instead, the use of
outdated or irrelevant data is avoided from the outset. This is
typically accomplished by considering only the most recent data
while ignoring older observations, e.g., by sliding a window of
fixed size over a data stream. To handle concept change in a more
direct way, appropriate techniques for discovering the drift or shift
are first of all required, for example based on statistical tests.

3. Recovery analysis

In practical studies, data streams are of course never truly
infinite. Instead, a “stream” is simply a large data set in the form of
a long yet finite sequence S¼ ðz1; z2;…; zT Þ. In experimental
studies, such streams are commonly used to produce a perfor-
mance curve showing the generalization performance of a model
sequence ðMtÞTt ¼ 1 over time. Although many of these studies are
interested in analyzing the ability of a learner to deal with concept
drift, such an analysis is hampered by at least two problems:

� Ignorance about drift: First, for a real data stream S, it is
normally not known whether it contains any concept drift, let
alone when such a drift occurs.

� Missing baseline: Second, even if a concept drift is known to
occur, it is often difficult to assess the performance of a learner
or to judge how well it recovers after the drift, simply because a
proper baseline is missing: The performance that could in
principle be reached, or at least be expected, is not known.

Obviously, these problems are less of an issue if data is generated
synthetically. In fact, for synthetic data, the “ground truth” is
always known. Moreover, synthetic data has the big advantage of
enabling controlled experiments. For example, one might be
interested in how an algorithm reacts to a drift depending on
certain characteristics of the drift, such as its strength and
duration. While real data will (at most) contain a single drift,

1 We slightly abuse notation by using the same symbol for the joint probability
and its marginals.
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